\(B=5+5^2+5^3+...+5^{96}\)
CMR B chia hết cho 96
Nhớ trình bày nha
Nếu trả lời đúng mik sẽ tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: B = 3 + 35 + 37 + .... + 31991
=> B = (3 + 35) + (37 + 311) + .... + (31987 + 31991)
=> B = 3.(1 + 34) + 37.(1 + 34) + ... + 31987.(1 + 34)
=> B = 3.82 + 37.82 + .... + 31987. 82
=> B = 82.(3 + 37 + ... + 31987) chia hết cho 41
Chứng minh:4 = 5
-->Ta có
-20 = -20
<=> 25 - 45 = 16 - 36
=> 5^2 - 2.5.9/ 2 = 4^2 - 2.4.9/2
Cộg cả 2 vế với (9/2)^2 để xuất hiện hằg đẳg thức :
5^2 - 2.5.9/2 + (9/2)^2 = 4^2 - 2.4.9/2 + (9/2)^2
<=> (5 - 9/2)^2 = (4 - 9/2 )^2
=> 5 - 9/2 = 4 - 9/2
=> 5 = 4
a^2 = b^2 <=> a = -b và a = b
khi bình phương 2 số thì sẽ có 2 trường hợp xảy ra, ở đây mới chỉ xét 1 trường hợp.....
1) \(5^1+5^2+5^3+...+5^{2003}+5^{2004}=\) \(\left(5^1+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2001}+5^{2004}\right)\)
\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)+...+5^{2001}\left(1+5^3\right)\)
\(=\left(1+5^3\right).\left(5+5^2+5^3+...+5^{2001}\right)\)
\(=126.\left(5+5^2+5^3+...+5^{2001}\right)⋮126\) \(\left(đpcm\right)\)
\(5+5^2+5^3...+5^{96}\) Biến đổi phép tính một chút cho đơn giản ta được:
\(5+5^2+5^3+...+5^{96}\Leftrightarrow1+1^2+1^3+...+1^{96}\)
Ta có: \(1^{96}=1\)mà . Ta lại có:
\(1+1^2+1^3+...+1^{96}=1+1+1+...+1\)
96 chữ số 1 hay tổng trên là 96
Mà \(96⋮96\Rightarrow1+1^2+1^3+...+1^{96}\)hay \(5+5^2+5^3+...+5^{96}⋮96\RightarrowĐPCM\)
Nhưng tại sao 5 ngũ lại thành 1 ngũ được