gpt \(\sqrt{8x+1}\) \(+\sqrt{46-10x}=x^3+5x^2+4x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
....
- giải
- giải
- giải
=> x =1
- bằng mấy nx thì không biết ...
\(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1<=>\sqrt{8x+1}-3+\sqrt{46-10x}-6=-x^3+5x^2+4x+1-3-6\)
\(<=> (x-1)(\frac{8}{\sqrt{8x+1}+3}-5 +x^2-4x-3-\frac{10}{\sqrt{46-10x}+6})=0\)
Xét : \((\frac{8}{\sqrt{8x+1}+3}-5 +x^2-4x-3-\frac{10}{\sqrt{46-10x}+6}) (*)\) ( với điều kiện \(\frac{23}{5}\geq x\geq- \frac{1}{8}\))
\((*)= \frac{8-5(\sqrt{8x+1}+3)}{\sqrt{8x+1}+3} +(x^2-4x-3)-\frac{10}{\sqrt{46-10x}+6})\)
\(= \frac{-7-5(\sqrt{8x+1})}{\sqrt{8x+1}+3} +(x^2-4x-3)-\frac{10}{\sqrt{46-10x}+6}) <0\)
\(=> x=1\)
Lời giải:
ĐKXĐ: \(\frac{23}{5}\geq x\geq \frac{-1}{8}\)
PT \(\Leftrightarrow (\sqrt{8x+1}-3)+(\sqrt{46-10x}-6)=-x^3+5x^2+4x-8\)
\(\Leftrightarrow \frac{8x-8}{\sqrt{8x+1}+3}-\frac{10x-10}{\sqrt{46-10x}+6}=(x-1)(-x^2+4x+8)\)
\(\Leftrightarrow (x-1)\left[\frac{8}{\sqrt{8x+1}+3}-\frac{10}{\sqrt{46-10x}+6}+x^2-4x-8\right]=0\)
Xét \(\frac{8}{\sqrt{8x+1}+3}-\frac{10}{\sqrt{46-10x}+6}+x^2-4x-8\). Với mọi $x$ thuộc ĐKXĐ ta có:
\(\frac{8}{\sqrt{8x+1}+3}\leq \frac{8}{3}\)
\(\frac{10}{\sqrt{46-10x}+6}>0\)
\(\frac{23}{5}\geq x\geq \frac{-1}{8}\Rightarrow 5>x>-1\Rightarrow (x+1)(x-5)< 0\)
\(\Rightarrow x^2-4x-8< -3\)
Do đó: \(\frac{8}{\sqrt{8x+1}+3}-\frac{10}{\sqrt{46-10x}+6}+x^2-4x-8< \frac{8}{3}+(-3)< 0\)
Suy ra $x-1=0\Rightarrow x=1$ là nghiệm duy nhất.
ĐKXĐ:...
a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành:
\(3a^2-2b^2+ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow3a=2b\)
\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
Phương trình trở thành:
\(a^2+2+ab=3a+b\)
\(\Leftrightarrow a^2-3a+2+ab-b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow...\)
tui không biết