K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 5 2024

Lời giải:
Áp dụng BĐT Cô-si ta có:

$ab+\frac{a}{b}\geq 2a$

$ab+\frac{b}{a}\geq 2b$

$\frac{a}{b}+\frac{b}{a}\geq 2$

Cộng theo vế 3 BĐT trên ta thu được:

$2(ab+\frac{a}{b}+\frac{b}{a})\geq 2(a+b+1)$

$\Rightarrow ab+\frac{a}{b}+\frac{b}{a}\geq a+b+1$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=1$

 

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

1)Cho a,b,c >0

Chứng minh  bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)

2) Cho a,b,c>0 1/a + 1/b + 1/c =1

Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2

Đọc tiếp...

10 tháng 11 2017

a/bc + b/ac >= 2.căn(1/c^2) = 2/c
tương tự:
a/bc + c/ab >= 2/b
b/ac + c/ab >= 2/a
cộng vế theo vế ;
ta đc
a/bc +b/ac+ c/ab >= 1/a +1/b +1/c
2)
a / (b+c) + 1 = (a+b+c)/(b+c)
=> a / (b+c) + b/(a+c) + c/(a+b) + 3 = (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b))
áp dụng bđt cauchy quen thuộc
(x+y+z)(1/x + 1/y + 1/z) >= 9
=> 2(a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b))
= (a+b + b+c + c+a)(1/(b+c) + 1/(a+c) + 1/(a+b)) >=9
=> (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b)) >= 9/2
=> (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b)) -3 >= 3/2
=> a / (b+c) + b/(a+c) + c/(a+b) + 3 -3 >= 3/2
=> a / (b+c) + b/(a+c) + c/(a+b) >=3/2

Chắc làm vậy

8 tháng 7 2021

\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}\)

\(=\frac{a^2+b^2+c^2}{abc}\)

\(\frac{a^2+b^2+c^2}{abc}\ge\frac{2ab+2bc+2ca}{abc}\)(BĐT tương đương)

\(\frac{2abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}{abc}\)

\(=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)< =>ĐPCM\)

23 tháng 9 2019

Áp dụng BĐT AM - GM cho 2 số dương:

 \(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{ab}{abc^2}}=\frac{2}{c}\)

\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{bc}{a^2bc}}=\frac{2}{a}\)

\(\frac{a}{bc}+\frac{c}{ab}\ge2\sqrt{\frac{ac}{ab^2c}}=\frac{2}{b}\)

Cộng từng vế của các BĐT trên. ta được:

\(2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(đpcm\right)\)

cho a,b,c>0.

Chứng minh a/ bc + b/ac + c/ab > =2(1/a +1/b - 1/c)

.

6 tháng 11 2016

Vì abc>0 nên có ít nhất 1 số lớn hơn 0

Vai trò của a, b, c như nhua nên chọn a>0

TH1: b<0;c<0 \(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\\ \Rightarrow b^2+c^2+2bc< -ab-ac\\ bc+ab+ac< -b^2-c^2-bc=-\left(b^2+c^2+a^2\right)< 0\)(trái với giả thiết)

\(\Rightarrow\)TH2: b>0, c>0 thì a>0( luôn đúng)

Vậy a, b, c >0

 

NV
3 tháng 5 2019

a/

Do \(\left\{{}\begin{matrix}a>2\Rightarrow\frac{1}{a}< \frac{1}{2}\\b>2\Rightarrow\frac{1}{b}< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{2}+\frac{1}{2}=1\)

\(\Rightarrow\frac{a+b}{ab}< 1\Rightarrow a+b< ab\) (đpcm)

b/ Ko rõ đề là gì

c/ \(\frac{a^2+b^2}{2}\ge ab\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh