K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{x}{1\cdot3}+\dfrac{x}{3\cdot5}+...+\dfrac{x}{99\cdot101}=50\)

=>\(x\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\right)=50\)

=>\(\dfrac{x}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)=50\)

=>\(\dfrac{x}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=50\)

=>\(\dfrac{x}{2}\cdot\left(1-\dfrac{1}{101}\right)=50\)

=>\(x\cdot\dfrac{50}{101}=50\)

=>x=101

14 tháng 5

giúp mình với

14 tháng 8 2017

\(\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+\left|x+\dfrac{1}{5.7}\right|+...+\left|x+\dfrac{1}{99.101}\right|=100x\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{1}{1.3}\right|\ge0\\\left|x+\dfrac{1}{3.5}\right|\ge0\\\left|x+\dfrac{1}{99.101}\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+\left|x+\dfrac{1}{5.7}\right|+...+ \left|x+\dfrac{1}{99.101}\right|\ge0\)\(\Rightarrow100x\ge0\)

\(\Rightarrow x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+x+\dfrac{1}{5.7}+...+x+\dfrac{1}{99.101}=100x\)\(\Rightarrow50x+\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{99.101}=100x\)

\(\Rightarrow50x+\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=100x\)

\(\Rightarrow50x+\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=100x\)

\(\Rightarrow50x+\dfrac{50}{101}=500x\)

\(\Rightarrow50x=\dfrac{50}{101}\)

\(\Rightarrow x=\dfrac{1}{101}\)

15 tháng 8 2017

lập lueenaj chút đê nhok

Ta có: \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{20}{41}\)

\(\Leftrightarrow\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{40}{41}\)

\(\Leftrightarrow1-\dfrac{2}{x+2}=\dfrac{40}{41}\)

\(\Leftrightarrow\dfrac{2}{x+2}=\dfrac{1}{41}\)

Suy ra: x+2=82

hay x=80

8 tháng 10 2021

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}.\dfrac{100}{101}=\dfrac{50}{101}\)

30 tháng 7 2021

`5/(1.3)+5/(3.5)+....+5/(99.101)`

`=5/2(2/(1.3)+2/(3.5)+....+2/(99.101))`

`=5/2(1-1/3+1/3-1/5+...+1/99-1/101)`

`=5/2(1-1/101)`

`=5/2*100/101`

`=250/101`

Ta có: \(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+...+\dfrac{5}{99\cdot101}\)

\(=\dfrac{5}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)

\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{5}{2}\cdot\dfrac{100}{101}\)

\(=\dfrac{250}{101}\)

11 tháng 3 2023

\(B=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\\ B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\\ B=\dfrac{1}{1}-\dfrac{1}{101}\\ B=\dfrac{101}{101}-\dfrac{1}{101}\\ B=\dfrac{100}{101}\)

11 tháng 3 2023

\(\dfrac{2}{1\cdot3}=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3}{3}-\dfrac{1}{3}=\dfrac{2}{3}\)

\(\dfrac{2}{3\cdot5}=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5}{15}-\dfrac{3}{15}=\dfrac{2}{15}\)

\(\dfrac{2}{5\cdot7}=\dfrac{1}{5}-\dfrac{1}{7}=\dfrac{7}{35}-\dfrac{5}{35}=\dfrac{2}{35}\)

và cứ như thế đến số cuối

 

9 tháng 5 2022

`A=2/[1.3]+2/[3.5]+2/[5.7]+.....+2/[99.101]`

`A=1-1/3+1/3-1/5+1/5-1/7+......+1/99-1/101`

`A=1-1/101=101-1/101=100/101`

9 tháng 5 2022

\(\dfrac{100}{101}\)

3 tháng 3 2023

\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{99.101}\\ =\dfrac{4}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =2.\left(1-\dfrac{1}{101}\right)\\ =2.\dfrac{100}{101}\\ =\dfrac{200}{101}\)

3 tháng 3 2023

`4/1.3+4/3.5+4/5.7+...+4/99.101`

`=2(2/1.3+2/3.5+2/5.7+...+2/99.101)`

`=2(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)`

`=2(1-1/101)`

`=2. 100/101`

`=200/101`

13 tháng 2 2022

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\left(\dfrac{100}{101}\right)=\dfrac{50}{101}\)

\(A=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}\)

5 tháng 2 2023

\(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{99^2}{98.100}\)
\(=\dfrac{2.2.3.3.4.4.....99.99}{1.3.2.4.3.5.....98.100}\)
\(=\dfrac{2.3.4.....99}{1.2.3.4.....98}.\dfrac{2.3.4.....99}{3.4.5.....100}\)
\(=\dfrac{99}{98}\cdot\dfrac{2}{100}\)
\(=\dfrac{99}{4900}\)

23 tháng 11 2021

\(\Leftrightarrow\dfrac{1}{2}\left[\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\right]=\dfrac{49}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\\ \Leftrightarrow2x+1=99\Leftrightarrow x=49\)

23 tháng 11 2021

Em cảm ơn.