K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)\cdot n}=\dfrac{1}{n-1}-\dfrac{1}{n}\)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}\)

=>\(\dfrac{1}{3^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{9}-\dfrac{1}{9n^2}\)

=>\(S< \dfrac{1}{9}\)

DD
21 tháng 5 2021

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10-9}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}< 1\)

21 tháng 5 2021

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\\ A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\\ A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\\ A< \frac{9}{10}< 1\Rightarrow A< 1\)

9 tháng 4 2019

Có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{8^2}< \frac{1}{7.8}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow B< 1-\frac{1}{8}< 1\)

\(\Rightarrow B< 1\) \(\Rightarrowđpcm\)

5 tháng 4 2018

Ta có 1/22<1/1.2

         1/32<1/2.3

         1/42<1/3.4

         ................

        1/8²<1/7.8

=>B<1/1.2+1/2.3+1/3.4+...+1/7.8

=>B<1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8

=>B<1-1/8

Vậy B < 1

18 tháng 3

ad a zwe zxdb WE4RBTa

2 tháng 5 2018

b=1/22+1/32+1/42+...+1/82<1/1.2+1/2.3+1/3.4+......+1/7.8

b=1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8

b=1-1/8

b=7/8

<=>b<1

k cho mink nha

18 tháng 3

b=1/22+1/32+1/42+...+1/82<1/1.2+1/2.3+1/3.4+......+1/7.8

b=1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8

b=1-1/8

b=7/8

<=>b<1
owo

18 tháng 12 2021

gải giúp mình với

23 tháng 7 2016

1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)

S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)

S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)

S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) +  ... + 593.(1 + 53)

S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126

S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126

+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2

=> S chia hết cho 10 => S có tận cùng là 0

2) 162008 - 82000

= (...6) - (84)500

= (...6) - (...6)500

= (...6) - (...6)

= (...0) chia hết cho 10

3) 13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103 = (x + 12)2

=> 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 + 1000 = (x + 1)2

=> (1 + 729) + (8 + 512) + (27 + 343) + (64 + 216) + 125 + 1000 = (x + 1)2

=> 730 + 520 + 370 + 280 + 1125 = (x + 1)2

=> (730 + 370) + (520 + 280) + 1125 = (x + 1)2

=> 1100 + 800 + 1125 = (x + 1)2 

=> 3025 = (x + 1)2, vô lí

24 tháng 7 2016

1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)

S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)

S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)

S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) +  ... + 593.(1 + 53)

S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126

S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126

+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2

=> S chia hết cho 10 => S có tận cùng là 0

4 tháng 5 2018

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)

\(\Rightarrow B=\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+...+\frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{2}+...+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{8}\)

\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{7}{8}< 1\)

\(\Rightarrow B< 1\)

2 tháng 5 2020

Mình đồng tình với bạn