Chứng minh rằng:
a)Tổng của 3 số tự nhiên liên tiếp là số chia hết cho 3
b)Tổng của 4 số tự nhiên liên tiếp là số chia hết cho 4
Giúp mình nhé!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
Giải:
a) Gọi 3 số tự nhiên liên tiếp đó lần lượt là: a, a + 1, a + 2 ( a,a+1,a+2 thuộc N )
Xét tổng a, a + 1, a + 2 ta có:
\(a+\left(a+1\right)+\left(a+2\right)=\left(a+a+a\right)+\left(1+2\right)=3a+3=3\left(a+1\right)⋮3\)
\(\Rightarrowđpcm\)
b) Gọi 4 số tự nhiên liên tiếp đó lần lượt là a, a + 1, a + 2, a + 3 ( a,a+1,a+2,a+3 thuộc N )
Xét tổng của a, a + 1, a + 2, a + 3 ta có:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)
\(=\left(a+a+a+a\right)+\left(1+2+3\right)\)
\(=4a+6\)
\(\Rightarrowđpcm\)
c) Gọi 5 số tự nhiên đó lần lượt là: a, a + 1, a + 2, a + 3, a + 4 ( a, a+1, a+2 , a+3, a+4 thuộc N )
Xét tổng của a, a + 1, a + 2, a + 3, a + 4 ta có:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)\)
\(=\left(a+a+a+a+a\right)+\left(1+2+3+4\right)\)
\(=5a+10\)
\(=5\left(a+2\right)⋮5\)
\(\Rightarrowđpcm\)
a) Gọi ba số tự nhiên liên tiếp là a, a + 1 , a + 2 , a\(\in\)N. Khi đó a + (a+1) + (a+2) = 3a + a
Mà 3a \(⋮\) 3, 3 \(⋮\) 3 \(\Rightarrow\) (3a + a) \(⋮3\left(đpcm\right)\)
b) \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)=4a+6\)
Mà \(4a⋮4,6⋮̸\) 4, nên (4a+6) \(⋮̸\) 4 (đpcm)
c) a + (a + 1) + (a + 2) + (a + 3) + (a+4) = 5a + 10
Mà 5a \(⋮\) 5 và 10 \(⋮5nên\left(5a+10\right)⋮5\left(đpcm\right)\)
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
a,
Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^
a) hai số liên tiếp thì sẽ có 1 số chẵn và 1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3
c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2
d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3
c) Gọi 2 số đó là n và n +1
n + (n+1) = 2n + 1 không chia hết cho 2
d) Tương tự : 3 số đó là n ; n+1 ; n +2
n + n + 1 + n + 2 = 3n + 3 chia hết cho 3
e) n + n + 1 + n + 2 + n + 3 = 4n+5 không chia hết cho 4
a, ta có a+(a+1)+(a+2)=3a+3=3(a+1) vậy tổng của 3 số tự nhiên liên tiếp phải chia hết cho 3
b, a+(a+1)+(a+2)+(a+3)=4a+4=4(a+1) vậy tổng của 4 số tự nhiên liên tiếp chia hết cho 4
c, a+(a+1)+(a+2)+(a+3)+(a+3)=5a+5=5(a+1) vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5
Số thứ 1:a
Số thứ 2:a+1
Số thứ 3:a+2
Ta có:a+(a+1)+(a+2)=a+a+1+a+2=3a+3 vì 3chia hết cho 3=>3a chia hết cho 3=>a+(a+1)+(a+2) chia hết cho 3
cn lại tự lm nha
cho sửa câu d nhé số tự nhiên liên tiếp là một số ko chia hết cho 4
a) Gọi 3 STN liên tiếp là a; a+1 ; a+2.
Ta có: a + a+1 + a+2 = a+a+a + (1+2) = 3a + 3.
Vì 3a và 3 chia hết cho 3 => 3a+3 chia hết cho 3 hay tổng 3 STN liên tiếp chia hết cho 3
a) Gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )
Ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3
Vậy tổng của 3 số liên tiếp chia hết cho 3
b) Gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )
Ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )