Phân tích đa thức thành nhân tử:\(4x^2-6x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 4 x 2 - 6 x = 2 x . 2 x - 3 . 2 x = 2 x ( 2 x - 3 ) .
x2 - 6x - 4x + 24 = 0
( x2 - 6x ) - ( 4x - 24 ) = 0
x( x - 6 ) - 4 ( x - 6 ) = 0
( x - 4 ) ( x - 6 ) = 0
\(\Rightarrow\orbr{\begin{cases}x-4=0\Rightarrow x=4\\x-6=0\Rightarrow x=6\end{cases}}\)
Vay x= 4 hoac x = 6
x2 - 6x - 4x + 24 = 0
( x2 - 6x ) - ( 4x - 24 ) = 0
x ( x - 6 ) - 4 ( x - 6 ) = 0
( x - 4 ) ( x - 6 ) = 0
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-6=0\end{cases}}\)
1. x - 4 = 0 => x = 4
2. x - 6 = 0 => x = 6
\(12x-9-4x^2=-\left(2x-3\right)^2\\ Sửa:x^3-6x^2y+12xy^2-8y^3=\left(x-2y\right)^3\)
a) \(4x^2+20x+25=\left(2x+5\right)^2\)
b) \(x^2-6x+9=\left(x-3\right)^2\)
c) \(4x^2+12x+9=\left(2x+3\right)^2\)
\(4x^3+14x^2+6x\)
\(=2x\left(2x^2+7x+3\right)\)
\(=2x\left(2x^2+6x+x+3\right)\)
\(=2x\left[2x\left(x+3\right)+\left(x+3\right)\right]\)
\(=2x\left[\left(2x+1\right)\left(x+3\right)\right]\)
\(=2x\left(2x+1\right)\left(x+3\right)\)
\(4x^2-y^2-6x+3y\)
\(=\left(2x\right)^2-y^2-3\left(2x-y\right)\)
\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)\)
\(=\left(2x-y\right)\left(2x+y-3\right)\)
Phân tích đa thức thành nhân tử :
\(4x^2-y^2-6x+3y\)
\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)\)
\(=\left(2x-y\right)\left(2x+y+3\right)\)
\(4x^2-6x=2x\left(2x-3\right)\)
Phân tích đa thức thành nhân tử
4x2−6x=2x(2x-3)
hãy k nếu bạn thấy đây là câu tl đúng :)