cho a b c d là các số dương thỏa mãn a+b+c+d=2 tìm min a^2+b^2+c^1+d^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*** $a,b,c>0$ thôi chứ không lớn hơn $1$ bạn nhé. $a,b,c>1$ thì $abc>1$ mất rồi.
-----------------------
Vì $a, b, c>0$ thỏa mãn $abc=1$ nên tồn tại $x,y,z>0$ sao cho:
$(a,b,c)=(\frac{x^2}{yz}, \frac{y^2}{xz}, \frac{z^2}{xy})$
Khi đó, áp dụng BĐT Cauchy_Schwarz:
$P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}$
$\geq \frac{(x+y+z)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{(x+y+z)^2}{(x+y+z)^2}=1$
Vậy $P_{\min}=1$ khi $x=y=z\Leftrightarrow a=b=c=1$
Xét : \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Vì \(a\) là số nguyên dương nên \(a,\left(a-1\right)\) là hai số tự nhiên liên tiếp .
\(\Rightarrow a\left(a-1\right)\) chia hết cho 2. Tương tự ta có : \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2.
\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn .
Lại có : \(a^2+c^2=b^2+d^2\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn .
Do đó : \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\inℕ^∗\))
Vậy : \(a+b+c+d\) là hợp số .
Xét : (�2+�2+�2+�2)−(�+�+�+�)(a2+b2+c2+d2)−(a+b+c+d)
=�(�−1)+�(�−1)+�(�−1)+�(�−1)=a(a−1)+b(b−1)+c(c−1)+d(d−1)
Vì �a là số nguyên dương nên �,(�−1)a,(a−1) là hai số tự nhiên liên tiếp .
⇒�(�−1)⇒a(a−1) chia hết cho 2. Tương tự ta có : �(�−1);�(�−1);�(�−1)b(b−1);c(c−1);d(d−1) đều chia hết cho 2.
⇒�(�−1)+�(�−1)+�(�−1)+�(�−1)⇒a(a−1)+b(b−1)+c(c−1)+d(d−1) là số chẵn .
Lại có : �2+�2=�2+�2⇒�2+�2+�2+�2=2(�2+�2)a2+c2=b2+d2⇒a2+b2+c2+d2=2(b2+d2) là số chẵn .
Do đó : �+�+�+�a+b+c+d là số chẵn mà �+�+�+�>2a+b+c+d>2 (Do �,�,�,�∈N∗a,b,c,d∈N∗)
Vậy : �+�+�+�a+b+c+d là hợp số .
Lời giải:
$a^2+b^2+c^2+d^2=(a+b)^2-2ab+(c+d)^2-2cd$
$=(a+b)^2+(c+d)^2-2ab-2cd$
$=(a+b+c+d)^2-2(a+b)(c+d)-2ab-2cd\vdots 2$
$\Rightarrow (a+b+c+d)^2\vdots 2$
$\Rightarrow a+b+c+d\vdots 2$
Mà $a,b,c,d$ là số nguyên dương nên $a+b+c+d>2$
Vậy $a+b+c+d$ là số chẵn lớn hơn 2, do đó nó là hợp số (đpcm)
Cho a,b,c,d là các số dương thỏa mãn a^2 + b^2=1 và a^4/c+b^4/d=1/c+d.Chứng minh rằng:a^2/c+d/b^2>=2
Áp dụng BĐT Cauchy ta có:
\(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)
Áp dụng tương tự ta được
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+d^2}\ge c-\frac{cd}{2};\frac{d}{1+a^2}\ge c-\frac{da}{2}\)
Tương tự ta cũng được
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}=\frac{\left(a+c\right)\left(b+d\right)}{2}\le\frac{\left(a+b+c+d\right)^2}{8}=2\)
Do vậy ta được \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\)
Dấu "=" xảy ra khi a=b=c=d=1
Ta có \(a^2+\dfrac{1}{b+c}=a^2+\dfrac{1}{6-a}\)
Mà \(a+b+c=6\Rightarrow0\le a,b,c\le2\)
\(\Rightarrow a^2+\dfrac{1}{6-a}\ge2^2+\dfrac{1}{6-2}=\dfrac{17}{4}\)
\(\Rightarrow P=\sum\sqrt{a^2+\dfrac{1}{b+c}}=\sum\sqrt{a^2+\dfrac{1}{6-a}}\ge\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}=\dfrac{3\sqrt{17}}{2}\)
Dấu \("="\Leftrightarrow a=b=c=2\)
áp dụng BĐT Bu-nhi-a ta có:
\(\left(a+b+c+d\right)^2\le\left(1^2+1^2+1^2+1^2\right)\left(a^2+b^2+c^2+d^2\right).\)
<=>\(2^2\le4\left(a^2+b^2+c^2+d^2\right)\)
<=>\(\left(a^2+b^2+c^2+d^2\right)\ge1\)
=> GTNN của a^2 +b^2 +c^2 +d^2 là 1 <=> a=b=c=d=1/2