Cho tam giác ABC vuông tại A và B = 60°. Trên cạnh BC lấy điểm D sao cho BD = BA.
a) Chứng minh: Tam giác ABD là tam giác đều.
b) Kẻ AH vuông góc với BC (H ∈ BC); kẻ DK vuông góc với AC (K∈ AC).
Chứng minh: tam giác AHD = tam giác AKD và AD là đường trung trực của đoạn thẳng HK.
c) Gọi G là giao điểm của AD và BK. Chứng minh : BK <BC.
d) Chứng minh : G là trọng tâm của tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ ( 1 ) và ( 2 ) => B, D , M thằng hàng
a, ΔABD có BA = BD (gt) và ˆABDABD^ = ˆABCABC^ = 60o60o
⇒ ΔABD đều (đpcm)
b, ΔABD đều ⇒ AB = AD
Xét ΔAHB và ΔAHD có:
AH chung; AB = AD (cmt); HB = HD (H là trung điểm của BD)
⇒ ΔAHB = ΔAHD (c.c.c)
⇒ ˆAHBAHB^ = ˆAHDAHD^ mà 2 góc này kề bù
⇒ ˆAHBAHB^ = ˆAHDAHD^ = 90o90o
⇒ AH ⊥ BD (đpcm)
c, ΔABD đều ⇒ AB = BD = AD = 2cm
⇒ HB = HD = 1cm
⇒ HC = BC - HB = 5 - 1 = 4cm
ΔAHB vuông tại H ⇒ AH = √AB2−HB2AB2−HB2 = √22−1222−12 = √33cm
ΔAHC vuông tại H ⇒ AC = √AH2+HC2AH2+HC2 = √3+423+42 = √1919cm
a) Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Xét ΔBAD cân tại B có \(\widehat{ABD}=60^0\)(gt)
nên ΔBAD đều(Dấu hiệu nhận biết tam giác đều)
b) Ta có: ΔBAD đều(cmt)
mà AH là đường trung tuyến ứng với cạnh BD(gt)
nên AH là đường cao ứng với cạnh BD(Định lí tam giác cân)
hay AH\(\perp\)BD(Đpcm)
a: Xét ΔBAD có BA=BD
nên ΔBAD cân tai B
b: góc CAD+góc BAD=90 độ
góc HAD+góc BDA=90 độ
mà góc BAD=góc BDA
nên góc CAD=góc HAD
=>ĐPCM
c: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
góc HAD=góc EAD
=>ΔAHD=ΔAED
=>AH=AE; DH=DE
=>AD là trung trực của HE
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: ΔABD=ΔACE
=>góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a: Xét ΔBAD có BA=BD và \(\widehat{ABD}=60^0\)
nên ΔBAD đều
b: Ta có: \(\widehat{CAD}+\widehat{BAD}=\widehat{BAC}=90^0\)
\(\widehat{HAD}+\widehat{BDA}=90^0\)(ΔDHA vuông tại H)
mà \(\widehat{BAD}=\widehat{BDA}\)
nên \(\widehat{CAD}=\widehat{HAD}\)
Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)
Do đó: ΔAHD=ΔAKD
=>AH=AK và DH=DK
AH=AK
=>A nằm trên đường trung trực của HK(1)
Ta có: DH=DK
=>D nằm trên đường trung trực của HK(2)
Từ (1),(2) suy ra AD là đường trung trực của HK
c: ΔBAD đều
=>\(\widehat{BAD}=\widehat{BDA}=60^0\); AD=DB=AB
Ta có: \(\widehat{ACB}+\widehat{ABC}=90^0\)
\(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}=90^0\)
mà \(\widehat{ABC}=\widehat{DAB}\left(=60^0\right)\)
nên \(\widehat{DAC}=\widehat{DCA}\)
=>ΔDAC cân tại D
ΔDAC cân tại D
mà DK là đường cao
nên K là trung điểm của AC
Ta có: DA=DC
DA=DB
Do đó: DC=DB
=>D là trung điểm của BC
Xét ΔABC có
AD,BK là các đường trung tuyến
AD cắt BK tại G
Do đó: G là trọng tâm của ΔABC