công thức:
\(\dfrac{1}{b.c.d}+\dfrac{1}{c.d.e}+...+\dfrac{1}{\left(n-1\right).n.\left(n+1\right)}\)
\(\dfrac{2}{b.c.d}+\dfrac{2}{c.d.e}+...+\dfrac{2}{\left(n-1\right).n.\left(n+1\right)}\)
=\(\dfrac{1}{b.c}-\dfrac{1}{c.d}+\dfrac{1}{c.d}-\dfrac{1}{d.e}+...+\dfrac{1}{\left(n-1\right).n}-\dfrac{1}{n.\left(n+1\right)}\)
=\(\dfrac{1}{b.c}-\dfrac{1}{n.\left(n+1\right)}\)