K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB và ΔADC có

AD chung

\(\widehat{BAD}=\widehat{CAD}\)

AB=AC

Do đó: ΔADB=ΔADC
=>\(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

=>AD\(\perp\)BC

b: ΔABD=ΔACD

=>DB=DC

=>D là trung điểm của BC

Xét ΔABC có

BM,AD là các đường trung tuyến

BM cắt AD tại G

Do đó: G là trọng tâm của ΔABC

=>BG=2GN

AG\(\perp\)BC

CN\(\perp\)CB

Do đó: AG//CN

Xét ΔMAG và ΔMCN có

\(\widehat{MAG}=\widehat{MCN}\)(AG//CN)

MA=MC

\(\widehat{AMG}=\widehat{CMN}\)(hai góc đối đỉnh)

Do đó: ΔMAG=ΔMCN

=>GM=NM

=>M là trung điểm của GN

=>GN=2GM

=>BG=GN

c: Xét ΔGBC có

GD là đường cao

GD là đường trung tuyến

Do đó: ΔGBC cân tại G

=>GB=GC

mà GB=GN

nên GC=GN

=>ΔGCN cân tại G

18 tháng 12 2016

O A C B D E

a)Có: OC=OA+AC

OD=OB+BD

Mà : OA=OA(gt); AC=BD(gt)

=> OC=OD

Xét ΔOBC và ΔOAD có:

OC=OD(cmt)

\(\widehat{O}\) : góc chung

OB=OA(gt)

=> ΔOBC=ΔOAD(c.g.c)

=> BC=AD

b)Vì: ΔOBC =ΔOAD(cmt)

=> \(\widehat{OCB}=\widehat{ODA};\widehat{OBC}=\widehat{OAD}\) ( cặp góc tượng ứng)

Có: \(\widehat{OAD}+\widehat{DAC}=180^o\)

\(\widehat{OBC}+\widehat{CBD}=180^o\)

Mà: \(\widehat{OBC}=\widehat{OAD}\left(cmt\right)\)

=> \(\widehat{DAC}=\widehat{CBD}\)

Xét ΔEAC và ΔEBD có

\(\widehat{ECA}=\widehat{EDB}\left(cmt\right)\)

AC=BD(gt)

\(\widehat{EAC}=\widehat{EBD}\left(cmt\right)\)

=> ΔEAC=ΔEBD(g.c.g)

c) Vì: ΔEAC=ΔEBD(cmt)

=> EC=ED

Xét ΔOEC và ΔOED có:

OC=OD(cmt)

\(\widehat{OCE}=\widehat{ODE}\left(cmt\right)\)

EC=ED(cmt)

=> ΔOEC=ΔOED(c.g.c)

=> \(\widehat{EOC}=\widehat{EOD}\)

=> OE là tia pg của \(\widehat{xOy}\)

Xét ΔCOE và ΔDOE có:

OC=OD(cmt)

\(\widehat{COE}=\widehat{DOE}\left(cmt\right)\)

OE: cạnh chung

=> ΔCOE=ΔDOE(c.g.c)

=> \(\widehat{OEC}=\widehat{OED}=90^o\)

18 tháng 12 2016

VỘI VÀNG QUÁ uk thánh soi

29 tháng 6 2018

hình như mỗi người chỉ dc k 3 lần thôi mà ,đúng ko???

Đúng thì tớ nhé mn! (^O^)

29 tháng 6 2018

AI TRẢ LỜI NHANH MÌNH SẼ K 10 LẦN LUÔN

8 tháng 6 2017

ngoc anh nguyen

Cho góc nhọn xOy,Điểm H nằm trên đường phân giác góc xOy,Từ H dựng các đường vuông góc với 2 cạnh Ox và Oy,Chứng minh tam giác HAB cân,Gọi D là hình chiếu của A trên Oy,C là giao điểm của AD và OH,Chứng minh BC vuông góc với Ox,Khi góc xOy = 60 độ,Chứng minh OA = 2OD,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

10 tháng 8 2017

đúng ko các bn

Cho góc nhọn xOy,Điểm H nằm trên đường phân giác góc xOy,Từ H dựng các đường vuông góc với 2 cạnh Ox và Oy,Chứng minh tam giác HAB cân,Gọi D là hình chiếu của A trên Oy,C là giao điểm của AD và OH,Chứng minh BC vuông góc với Ox,Khi góc xOy = 60 độ,Chứng minh OA = 2OD,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

30 tháng 11 2021

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{O}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

Suy ra: AD=CB

a: Ta có: ΔABC cân tại A

mà AD là đường phân giác

nên D là trung điểm của BC

hay BD=CD

b: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

c: Đặt AD/4=BD/3=k

=>AD=4k; BD=3k

Xét ΔADB vuông tại D có \(AB^2=AD^2+BD^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AD=8(cm)

28 tháng 2 2022

a) Xét tam giác ABC cân tại A:

AD là phân giác góc A (gt).

=> AD là trung tuyến (T/c tam giác cân).

=> D là trung điểm của BC.

=> BD = CD.

b) Xét tam giác ABC cân tại A:

AD là phân giác góc A (gt).

=> AD là đường cao (T/c tam giác cân).

=> AD vuông góc với BC.

c) Ta có: \(\dfrac{AD}{BD}=\dfrac{4}{3}.\Rightarrow BD=\dfrac{3}{4}AD.\)

Xét \(\Delta ADB\) vuông tại D:

\(AB^2=AD^2+BD^2\left(Pytago\right).\\ \Rightarrow AB^2=AD^2+\left(\dfrac{3}{4}AD\right)^2.\\ \Leftrightarrow AB^2=AD^2+\dfrac{9}{16}AD^2=\dfrac{25}{16}AD^2.\\ \Rightarrow10^2=\dfrac{25}{16}AD^2.\\ \Rightarrow AD^2=64.\\ \Rightarrow AD=8\left(cm\right).\)

a: Xét ΔBAD vuông tại D và ΔBCE vuông tại E có 

BA=BC

\(\widehat{ABD}\) chung

Do đó: ΔBAD=ΔBCE

b: Xét ΔBEF vuông tại E và ΔBDF vuông tại D có

BF chung

BE=BD

Do đó:ΔBEF=ΔBDF

Suy ra: \(\widehat{EBF}=\widehat{DBF}\)

hay BF là tia phân giác của góc ABC