K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5

loading...  

a) Xét hai tam giác vuông: ∆BHF và ∆CHE có:

∠BHF = ∠CHE (đối đỉnh)

⇒ ∆BHF ∽ ∆CHE (g-g)

b) Xét hai tam giác vuông: ∆AFC và ∆AEB có:

∠A chung

⇒ ∆AFC ∽ ∆AEB (g-g)

⇒ AF/AE = AC/AB

⇒ AF.AB = AE.AC

c) Sửa đề. Đường thẳng vuông góc với HK tại H cắt AB và AC lần lượt tại P và Q

Giải

Qua C vẽ đường thẳng song song với PQ cắt AB, AD lần lượt tại N và G

⇒ CN // PQ

Mà PQ ⊥ HK

⇒ CN ⊥ HK

⇒ CG ⊥ HK

⇒ HK là đường cao của ∆CHG

Lại có:

BC ⊥ AD (gt)

⇒ CD ⊥ HG

⇒ CD là đường cao thứ hai của ∆CHG

Mà CD cắt HK tại K

⇒ GK là đường cao thứ ba của ∆CHG

⇒ GK ⊥ CH

Mà CH ⊥ AB (gt)

⇒ GK // AB

⇒ GK // BN

∆BCN có:

K là trung điểm của BC (gt)

GK // BN (cmt)

⇒ G là trung điểm của CN

⇒ CG = NG

Do PQ // CN

⇒ PH // NG và QH // CG

∆ANG có:

PH // NG (cmt)

⇒ HP/NG = AH/AG (hệ quả định lý Thales) (1)

∆ACG có:

HQ // CG (cmt)

⇒ HQ/CG = AH/AG (2)

Từ (1) và (2) ⇒ HP/NG = HQ/CG

Mà CG = NG (cmt)

⇒ HP = HQ

a: Xét ΔADB và ΔADE có

AD chung

\(\widehat{BAD}=\widehat{EAD}\)

AB=AE

Do đó: ΔADB=ΔADE

b: Ta có: ΔADB=ΔADE

=>\(\widehat{ABD}=\widehat{AED}\)

=>\(\widehat{ABC}=\widehat{AEF}\)

Xét ΔEAF và ΔBAC có

\(\widehat{AEF}=\widehat{ABC}\)

AE=AB

\(\widehat{EAF}\) chung

Do đó: ΔEAF=ΔBAC

=>AF=AC

c: Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{FBD}=\widehat{CED}\)

Ta có: ΔABD=ΔAED

=>DB=DE

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC

Bổ sung đề: Trên tia đối của tia BA, lấy F sao cho BF=EC

a: Xét ΔADB và ΔADE có

AD chung

\(\widehat{DAB}=\widehat{DAE}\)

AB=AE

Do đó: ΔADB=ΔADE

b: AB+BF=AF

AE+EC=AC

mà AB=AE

và BF=EC

nên AF=AC

c: ta có; ΔABD=ΔAED

=>\(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\widehat{ABD}+\widehat{DBF}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{DBF}=\widehat{DEC}\)

Ta có; ΔABD=ΔAED

=>DB=DE

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC

18 tháng 3 2021

J đây b

19 tháng 12 2021

Chưa viết hết đầu bài kìa

17 tháng 2 2023

Đề lỗi

17 tháng 2 2023

cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek

17 tháng 2 2023

Đề lỗi

17 tháng 2 2023

 đề đây nha mn :((   cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E

23 tháng 8

=> Đề của bạn chưa đầy đủ và rõ ràng, bạn xem lại nhé!

14 tháng 3 2023

Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME 
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP 
c cmr CE = CD tam giác AMD là tam giác j vì s 
D  CMR AM NHỎ HƠN AB +AC /2
​CHỈ LM MỖI Ý D THUI NHA NHANH NHA

a: Xét ΔAMB và ΔEMC có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xet ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại B

=>BD=BA=CE

c: Xet ΔMAD có

MH vừa là đường cao,vừa là trung tuyến

=>ΔMAD cân tại M

d: AM<1/2(AB+AC)

=>AE<AB+AC

=>AE<BE+AB(luôn đúng)