A=1/2^2+1/3^2+1/4^2+.......+1/63^2 Chứng minh rằng:A >1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(A=1+3+3^2+3^3+...+3^{2015}\)
\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2014}\cdot\left(1+3\right)\)
\(=4\cdot\left(1+3^2+...+3^{2014}\right)⋮4\)
b: Ta có: \(A=1+3+3^2+3^3+...+3^{2015}\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2013}\left(1+3+3^2\right)\)
\(=13\cdot\left(1+3^3+...+3^{2013}\right)⋮13\)
1/2+1/3+1/4+...+1/63>1/31+1/31+1/31...+1/31( 62 số hạng 31)
hay 1/2+1/3+1/4+...+1/63>62 x 1/31
nên 1/2+1/3+1/4+...+1/63>2(dpcm)
k ủng hộ nha
\(\dfrac{1}{2^2}>\dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{63^2}>\dfrac{1}{63\cdot64}=\dfrac{1}{63}-\dfrac{1}{64}\)
Do đó: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{63^2}>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{63}-\dfrac{1}{64}\)
=>\(A>\dfrac{1}{2}-\dfrac{1}{64}>\dfrac{1}{2}\)