Câu 10. Từ điểm A nằm ngoài đường tròn (0) kẻ các tiếp tuyến AB, AC đến đường tròn (B, C là tiếp điểm). Gọi H là giao điểm của OA và BC.
a. Chứng minh OB = OH.OA.
b. EF là một dây cung của (O) đi qua H sao cho A, E, F không thẳng hàng. Chứng minh bốn điểm A, E, O, F nằm trên cùng một đường tròn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này sử dụng bài toán phụ sau : tứ giác MNPQ nội tiếp có 2 đường chéo cắt nhau tại G thì
GM . GP = GN . GQ (hệ thức lượng trong đường tròn hay còn gọi là phương tích)
Vì từ giác BECF nội tiếp => HB . HC = HE . HF (1)
VÌ tứ giác ABOC có ^ABO = ^ACO = 90o
=> ABOC nội tiếp => HO . HA = HB . HC (2)
Từ (1) ; (2) => HO . HA = HE . HF
=> AEOF nội tiếp (đpcm)
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại trung điểm của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
b: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)ED tại E
=>BE\(\perp\)AD tại E
Xét ΔDBA vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(3\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(4\right)\) và \(OH\cdot OA=OB^2\)
Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)
c: Xét ΔOKH vuông tại K và ΔOIA vuông tại I có
\(\widehat{KOH}\) chung
Do đó: ΔOKH đồng dạng với ΔOAI
=>\(\dfrac{OK}{OA}=\dfrac{OH}{OI}\)
=>\(OK\cdot OI=OH\cdot OA\)
mà \(OH\cdot OA=OB^2\)
nên \(OK\cdot OI=OB^2=R^2=OD^2\)
=>\(\dfrac{OK}{OD}=\dfrac{OD}{OI}\)
Xét ΔOKD và ΔODI có
\(\dfrac{OK}{OD}=\dfrac{OD}{OI}\)
\(\widehat{KOD}\) chung
Do đó: ΔOKD đồng dạng với ΔODI
=>\(\widehat{ODK}=\widehat{OID}=90^0\)
=>KD là tiếp tuyến của (O)
a Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
=>OH*OA=OB^2=R^2
b: góc ABM=góc ACM
góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM
=>BM là phân giác của góc ABH
Bổ sung đề: đường kính BD
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC(3)
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD(4)
Từ (3) và (4) suy ra OH//DC
Xét ΔBCD có OH//DC
nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}=\dfrac{1}{2}\)
=>DC=2OH
c: Bổ sung đề; AD cắt (O) tại điểm thứ hai là E
Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)ED tại E
=>BE\(\perp\)AD tại E
Xét ΔBDA vuông tại B có BElà đường cao
nên \(AE\cdot AD=AB^2\left(5\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(6\right)\)
Từ (5) và (6) suy ra \(AE\cdot AD=AH\cdot AO\)
=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{EAH}\) chung
Do đó: ΔAEH đồng dạng với ΔAOD
=>\(\widehat{AHE}=\widehat{ADO}\)
a:Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
b: Xét ΔOBA vuông tại B có BH là đường cao
nên \(BH^2=OH\cdot HA=\left(\dfrac{BC}{2}\right)^2=\dfrac{BC^2}{4}\)
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
=>ΔABC cân tại A
b: OB=OC
AB=AC
Do đó: AO là trung trực của BC
=>AO vuông góc với BC
a. Chắc đề đúng là \(OB^2=OH.OA\)
Theo t/c hai tiếp tuyến cắt nhau: \(AB=AC\)
Lại có \(OB=OC=R\)
\(\Rightarrow OA\) là trung trực của BC
\(\Rightarrow OA\perp BC\) tại H đồng thời H là trung điểm BC
Cũng do AB là tiếp tuyến \(\Rightarrow AB\perp OB\Rightarrow\Delta OAB\) vuông tại B
Áp dụng hệ thức lượng trong tam giác vuông OAB:
\(OB^2=OH.OA\)
b.
Ta có: \(OF=OB=R\Rightarrow OF^2=OH.OA\)
\(\Rightarrow\dfrac{OF}{OH}=\dfrac{OA}{OF}\)
Xét hai tam giác OAF và OFH có:
\(\left\{{}\begin{matrix}\widehat{AOF}-chung\\\dfrac{OF}{OH}=\dfrac{OA}{OF}\end{matrix}\right.\) \(\Rightarrow\Delta OAF\sim\Delta OFH\left(c.g.c\right)\)
\(\Rightarrow\widehat{OAF}=\widehat{OFH}\) hay \(\widehat{OAF}=\widehat{OFE}\)
Mà \(OE=OF=R\Rightarrow\Delta OEF\) cân tại O \(\Rightarrow\widehat{OFE}=\widehat{OEF}\)
\(\Rightarrow\widehat{OAF}=\widehat{OEF}\)
Hai góc nói trên cùng chắn OF và cùng nằm trong nửa mặt phẳng bờ OF
\(\Rightarrow OEAF\) nội tiếp hay 4 điểm A, E, O, F cùng nằm trên 1 đường tròn