cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại E. Kẻ ED vuông góc với BC tại D.
a) chứng minh : tam giác ABE = tam giác DBE
b) chứng minh : EC > EA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a, Vì ED \(\perp\)BC ( gt ) \(\Rightarrow\)\(\Delta\)DBE là tam giác vuông tại D
Xét \(\Delta\) vuông ABE và \(\Delta\)vuông DBE, có :
BE : cạnh chung
góc ABE = góc DBE ( BE là tpg góc ABC )
\(\Rightarrow\)\(\Delta\)vuông ABE = \(\Delta\) vuông DBE ( cạnh huyền góc nhọn )
b, Vì \(\Delta\) ABE = \(\Delta\)DBE ( cmt )
\(\Rightarrow\)BA = BD ( 2 cạnh tương ứng ) \(\Rightarrow\)B nằm trên đtt của AD ( đ/l đảo )
AE = DE ( 2 cạnh tương ứng )\(\Rightarrow\) E nằm trên đtt của AD ( đ/l đảo )
Từ 2 điều trên \(\Rightarrow\) BE là đtt của đoạn thẳng AD
c, +, ta có : \(\Delta\)BAD cân tại B ( BA = BD )
\(\Rightarrow\)góc BAD = góc BDA ( t/c )
Vì AH \(\perp\) BC tại H ( gt ) \(\Rightarrow\) \(\Delta\) HAD vuông tại H
Xét \(\Delta\)vuông HAD, có :
góc HAD + góc HDA ( hay góc BDA ) = 90o ( 2 góc phụ nhau )
Xét \(\Delta\) vuông ABC, có :
góc CAD + góc BAD = 90o ( 2 góc phụ nhau )
Mà góc BDA = góc BAD ( cmt )
Từ các điều trên \(\Rightarrow\)góc HAD = góc CAD (1)
Mà tia AD nằm giữa 2 tia AH, AC ( cách vẽ ) (2)
Từ (1) và (2) \(\Rightarrow\) AD là tpg của góc HAC ( đpcm )
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
góc ABE=góc DBE
=>ΔBAE=ΔBDE
b: BA=BD
EA=ED
=>BE là trung trực của AD
c: góc BAD+góc CAD=90 độ
góc HAD+góc BDA+90 độ
góc BAD=góc BDA
=>góc CAD=góc HAD
=>AD làphân giác của góc HAC
Xét ΔABE vuông tại A và ΔDBE vuông tại D có
BE chung
góc ABE=góc DBE
Do đó: ΔABE=ΔDBE
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
a: Xét ΔABE vuông tại A và ΔDBE vuông tại D có
BE chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔABE=ΔDBE
b: ta có: ΔABE=ΔDBE
=>EA=ED
mà ED<EC(ΔEDC vuông tại E)
nên EA<EC