S=1/3+1/3^2+1/3^3+1/3^4+...+1/3^300
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2S=2\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)
\(2S=2+1+...+\frac{1}{2^{99}}\)
\(2S-S=\left(2+1+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)
\(S=2-\frac{1}{2^{100}}\)
phần b tương tự
a. S=1+1/2+1/2^2+1/2^3+...+1/2^100
2S=2+1+1/2+1/2^2+...+1/2^99
2S-S=(2+1+1/2+1/2^2+...+1/2^99)-(1+1/2+1/2^2+1/2^3+...+1/2^100)
S=2-1/2^100
S=2^101-1/2^100
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{299}+3^{300}\right)\\ S=\left(1+3\right)\left(1+3^2+...+3^{299}\right)\\ S=4\left(1+3^2+...+3^{299}\right)⋮4\)
1. So sánh
a) \(25^{50}\) và \(2^{300}\)
\(25^{50}=25^{1.50}=\left(25^1\right)^{50}=25^{50}\)
\(2^{300}=2^{6.50}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25< 64\) nên \(25^{50}< 64^{50}\)
Vậy \(25^{50}< 2^{300}\)
b) \(625^{15}\) và \(12^{45}\)
\(625^{15}=625^{1.15}=\left(625^1\right)^{15}=625^{15}\)
\(12^{45}=12^{3.15}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625< 1728\) nên \(625^{15}< 1728^{15}\)
Vậy \(625^{15}< 12^{45}\)
1.So sánh
a)\(25^{50}\) và \(2^{300}\)
Ta có : \(2^{300}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25^{50}< 64^{50}\) nên \(25^{50}< 2^{300}\)
b)\(625^{15}\) và \(12^{45}\)
Ta có : \(12^{45}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625^{15}< 1728^{15}\) nên \(625^{15}< 12^{45}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(S=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{300}}\\ 3S=3\cdot\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{300}}\right)\\ 3S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{299}}\\ 3S-S=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{299}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{300}}\right)\\ 2S=1-\dfrac{1}{3^{300}}\\ S=\dfrac{1-\dfrac{1}{3^{300}}}{2}\)
Vậy \(S=\dfrac{1-\dfrac{1}{3^{300}}}{2}\)