K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Phương trình hoành độ giao điểm là:

\(x^2=\left(m+2\right)x-m-1\)

=>\(x^2-\left(m+2\right)x+m+1=0\)(1)

\(\text{Δ}=\left[-\left(m+2\right)\right]^2-4\cdot1\left(m+1\right)\)

\(=m^2+4m+4-4m-4=m^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0

=>\(m^2>0\)

=>\(m\ne0\)

b: Khi m<>0 thì phương trình (1) sẽ có hai nghiệm phân biệt là:

\(\left[{}\begin{matrix}x=\dfrac{\left(m+2\right)-\sqrt{m^2}}{2}=\dfrac{m+2-m}{2}=\dfrac{2}{2}=1\\x=\dfrac{\left(m+2\right)+\sqrt{m^2}}{2}=\dfrac{m+2+m}{2}=\dfrac{2m+2}{2}=m+1\end{matrix}\right.\)

\(\dfrac{1}{\left|x_1\right|}+\dfrac{1}{\left|x_2\right|}=2\)

=>\(\dfrac{1}{\left|m+1\right|}+\dfrac{1}{\left|1\right|}=2\)

=>\(\dfrac{1}{\left|m+1\right|}=1\)

=>|m+1|=1

=>\(\left[{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=0\left(loại\right)\\m=-2\left(nhận\right)\end{matrix}\right.\)

Bài 4: 

Nhóm 1: x;1/3x; 8x

Nhóm 2: \(x^2;5x^2;-3x^2\)

5 tháng 7 2021

- Xét : \(x^2+8x-20\le0\)

\(\Rightarrow-10\le x\le2\)

\(x>0\)

\(\Rightarrow0< x\le2\)

- Xét  \(x^2-2\left(m+3\right)x+m^2-2m< 0\)

Có : \(\Delta^,=b^{,2}-ac=\left(m+3\right)^2-\left(m^2-2m\right)\)

\(=m^2+6m+9-m^2+2m=8m+9\)

- Để bất phương trình có nghiệm

\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow m>-\dfrac{9}{8}\)

=> Bất phương trình có nghiệm \(S=\left(x_1;x_2\right)\)

\(0< x\le2\)

\(\Rightarrow0< x_1< x_2\le2\)

\(TH1:x=2\)

\(\Rightarrow4-4\left(m+3\right)+m^2-2m< 0\)

\(\Rightarrow3-\sqrt{17}< m< 3+\sqrt{17}\)

\(TH2:0< x_1< x_2< 2\)

\(\Rightarrow\left\{{}\begin{matrix}m^2-2m>0\\m^2-6m-8>0\\0< 2\left(m+3\right)< 2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\\\left[{}\begin{matrix}m>3+\sqrt{17}\\m< 3-\sqrt{17}\end{matrix}\right.\\-3< m< -2\end{matrix}\right.\)

Vậy \(3-\sqrt{7}< m< 3+\sqrt{7}\)


 

6 tháng 7 2021

Ban ơi :(( ngay chỗ dấu ngoặc nhọn đầu tiên của TH2 có công thức j k bạn?

NV
6 tháng 7 2021

Nếu \(y\le0\Rightarrow\left(y-4\right)^2\ge16>9\left(ktm\right)\Rightarrow y>0\)

Nếu \(x\ge0\Rightarrow\left(x+5\right)^2\ge25>9\left(ktm\right)\Rightarrow x< 0\)

Đặt \(\left\{{}\begin{matrix}-x=a>0\\y=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-5\right)^2+\left(b-4\right)^2\le9\\3a+b\ge14\end{matrix}\right.\)

Ta có:

\(14^2\le\left(3a+b\right)^2\le\left(3^2+1\right)\left(a^2+b^2\right)\Rightarrow a^2+b^2\ge\dfrac{196}{10}=\dfrac{98}{5}\)

\(P_{min}=\dfrac{98}{5}\) khi \(\left(a;b\right)=\left(\dfrac{21}{5};\dfrac{7}{5}\right)\) hay \(\left(x;y\right)=\left(-\dfrac{21}{5};\dfrac{7}{3}\right)\)

Lại có:

\(\left(a-5\right)^2+\left(b-4\right)^2\le9\Leftrightarrow a^2+b^2\le10a+8b-32\le\sqrt{\left(10^2+8^2\right)\left(a^2+b^2\right)}-32\)

\(\Rightarrow P\le2\sqrt{41}\sqrt{P}-32\Leftrightarrow P-2\sqrt{41}\sqrt{P}+32\le0\)

\(\Rightarrow\left(\sqrt{P}-3-\sqrt{41}\right)\left(\sqrt{P}-3+\sqrt{41}\right)\le0\) (1)

Do \(P\ge\dfrac{98}{5}\Rightarrow\sqrt{P}-3+\sqrt{41}>0\)

Nên (1) tương đương: \(\sqrt{P}-3-\sqrt{41}\le0\Rightarrow P\le50+6\sqrt{41}\)

\(P_{max}=50+6\sqrt{41}\) khi \(\left(a;b\right)=\left(5+\dfrac{15}{\sqrt{41}};4+\dfrac{12}{\sqrt{41}}\right)\) 

18 tháng 4 2022

chép đề là sao?

ghi lại đề thì b tự lm dc mà

18 tháng 4 2022

Ko phải cái đó là cô mình kêu chép nguyên cái câu đó ra kèm theo đáp án mowai ở chỗ trống á

5 tháng 7 2021

Xét pt hoành độ gđ của đường thẳng và parabol có:

\(\left(m-1\right)x^2+3mx+2m=2x-1\)

\(\Leftrightarrow\left(m-1\right)x^2+x\left(3m-2\right)+2m+1=0\) (1)

Để đt và parabol cắt tại hai điểm pb có hoành độ âm

\(\Leftrightarrow\) Pt (1) có hai nghiệm âm phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S< 0\\P>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m+8>0\\\dfrac{2-3m}{m-1}< 0\\\dfrac{2m+1}{m-1}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;4-2\sqrt{2}\right)\cup\left(4+2\sqrt{2};+\infty\right)\\m\in\left(-\infty;\dfrac{2}{3}\right)\cup\left(1;+\infty\right)\\m\in\left(-\infty;-\dfrac{1}{2}\right)\cup\left(1;+\infty\right)\end{matrix}\right.\)

\(\Rightarrow m\in\left(-\infty;-\dfrac{1}{2}\right)\cup\left(4+2\sqrt{2};+\infty\right)\)

Vậy...

9 tháng 9 2021

games: computer games, chess, blind man's buff                trò chơi: trò chơi điện tử, cờ vua, bịt mắt bắt dê

sports: football, gymnastics, aerobics                     thể thao: bóng đá, thể dục dụng cụ, thể dục nhịp điệu

arts and crafts: pottery, painting, making handmade flowers           nghệ thuật và thủ công: gốm, vẽ tranh, làm hoa thủ công

other activities: swimming, sleeping, watching TV                các hoạt động khác: bơi lội, ngủ, xem TV

9 tháng 12 2021

\(B=\left(x-8x-3\right)\)

\(B=\left(x^2-2x4-16\right)+13\)

\(-B=\left(x^2+2x4+16\right)-13\)

\(-B=\left(x+4\right)^2-13\ge-13\)

\(B=-\left(x+4\right)^2+13\le13\)

Dấu "=" xảy ra khi và chỉ khi \(-\left(x+4\right)^2=0\)

\(\Leftrightarrow\left(x+4^2\right)=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy GTLN của B là 13 khi và chỉ khi x=-4

12 tháng 7 2021

1) \(\sqrt{2-\sqrt{3}}\left(\sqrt{5}+\sqrt{2}\right)=\sqrt{\dfrac{4-2\sqrt{3}}{2}}\left(\sqrt{5}+\sqrt{2}\right)\)

\(=\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{2}}\left(\sqrt{5}+\sqrt{2}\right)=\dfrac{\sqrt{3}-1}{\sqrt{2}}\left(\sqrt{5}+\sqrt{2}\right)=\dfrac{\sqrt{15}+\sqrt{6}-\sqrt{5}-\sqrt{2}}{\sqrt{2}}\)

theo mình nghĩ thì đề nên là \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)

như thế thì sẽ  \(=\dfrac{\sqrt{3}-1}{\sqrt{2}}.\sqrt{2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\) đẹp hơn,đó là mình nghĩ vậy thôi,còn nếu đề bạn đúng thì mình làm ở trên đó

2) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{\dfrac{6-2\sqrt{5}}{2}}+\sqrt{\dfrac{6+2\sqrt{5}}{2}}\)

\(=\sqrt{\dfrac{\left(\sqrt{5}-1\right)^2}{2}}+\sqrt{\dfrac{\left(\sqrt{5}+1\right)^2}{2}}=\dfrac{\sqrt{5}-1}{\sqrt{2}}+\dfrac{\sqrt{5}+1}{\sqrt{2}}=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

3) Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Rightarrow A^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}\)

\(=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)

\(\Rightarrow A=\sqrt{5}+1\left(A\ge0\right)\)

4) \(\dfrac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}=\dfrac{9+4\sqrt{5}-8\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\dfrac{9-4\sqrt{5}}{2\left(\sqrt{5}-2\right)}\)

\(=\dfrac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}=\dfrac{1}{2}\)

12 tháng 7 2021

Cảm ơn ban ạ yeu