Ai giúp em câu này với ạ
Câu 5:
b) Có bao nhiêu số tự nhiên có ba chữ số đôi 1 khác nhau và bé hơn số 475
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi các số thỏa ycbt là \(\overline{abcd}\).
Xét trường hợp \(a\le3\). Do \(d\) là số lẻ nên \(d\in\left\{1;3;5;7\right\}\) (4 cách)
Với mỗi cách chọn d, a có 6 cách chọn, b có 6 cách chọn và c có 5 cách chọn. Suy ra có \(4.6.6.5=720\) số
Xét trường hợp \(a=4\). Nếu \(b=0\) thì c có 6 cách chọn. Nếu c lẻ (4 cách chọn) thì d có 3 cách chọn \(\Rightarrow\) Có \(4.3=12\) số. Nếu c chẵn (2 cách chọn) thì d có 4 cách chọn \(\Rightarrow\) Có \(2.4=8\) số. Do đó, có tất cả \(12+8=20\) số dạng \(\overline{40cd}\) thỏa ycbt.
Nếu \(b=1\) thì c có 4 cách chọn. Nếu \(c=3\) thì \(d\in\left\{5;7\right\}\) (có 2 số). Nếu c chẵn (3 cách) thì d có 3 cách. \(\Rightarrow\) Có \(3.3=9\) số. Vậy có tất cả \(2+9=11\) số dạng \(\overline{41cd}\) thỏa ycbt.
Vậy có \(20+11=31\) số dạng \(\overline{4bcd}\) thỏa ycbt. Do đó, có tất cả \(720+31=751\) số thỏa ycbt.
Bài 1 :
a) => Ta có dãy : 1,2,3,...,19
Vậy có số số tự nhiên nhỏ hơn 20 là:
(19-1):1+1 = 19 số
b) với n là vô hạn
c) với n là vô hạn
Bài 2 :
Ta có abc là chính
=> có thể lập các cách sau :
+ abc , acb
+ bac , bca
+ cab , cba
Vậy có thể lập được 6 số có 3 chữ số như vậy
bài 3 : gọi 5 chữ số đó là abcde
Tương tự bài 2 có thể lập lần lượt các chữ số thay thế đứng đầu :
- Ta có các dạng 3 chữ số như sau : abc , abd , acd , ace , ade , abe ( Tương tự có tất cả 5 chữ số => có 6.5 = 30 dạng tương tự )
- Mà mỗi dạng có thể lập được 3 chữ số
Vậy => 6.30 = 180 số
Bài 4 :
=> + Từ 3 đến 9 cần 7 chữ số
+ Từ 10 đến 99 cần 180 chữ số
+ Từ 100 đến 132 cần 99 chữ số
Vậy cần số chữ số để đánh hết quyển sách đó là :
7+180+99 = 286 chữ số
TH1: số có 1 chữ số (hiển nhiên thỏa mãn) có 8 số
TH2: số có 2 chữ số có \(7.7=49\) số
TH3: số có 3 chữ số có \(7.7.6=294\) số
TH4: số có 4 chữ số, gọi số đó là \(\overline{abcd}\)
- Với \(a=\left\{1;2\right\}\) (2 cách chọn) \(\Rightarrow\) bộ bcd chọn bất kì đều thỏa mãn \(\Rightarrow A_7^3\) cách chọn và hoán vị bộ bcd
\(\Rightarrow2.A_7^3\) số
- Với \(a=3\):
+ Nếu \(b< 6\Rightarrow\) b có 5 cách chọn (từ 0,1,2,4,5). Lúc này chọn c,d bất kì đều thỏa mãn \(\Rightarrow\) có \(A_6^2\) cách chọn cd
\(\Rightarrow5.A_6^2\) số
+ Nếu \(b=6\Rightarrow c=0\) , khi đó d có 2 cách chọn (từ 1;2)
\(\Rightarrow\) 2 số
Vậy tổng cộng ta lập được số số là: \(8+49+294+2.A_7^3+5.A_6^2+2=...\)
Đáp án B
Số cần lập là a b c d e f , ta có a + b + c – 1 = d + e + f <=> 20 = 2(d + e + f) <=> d + e + f = 10
Với mỗi f ∈ { 1 ; 3 ; 5 } => d, e có 4 cách chọn, suy ra a b c d e f có 4.3! = 24 cách chọn
Suy ra có 3.24 = 72 số có thể lập thỏa mãn đề bài.
Đáp án B
Số cần lập là a b c d e f ¯ , ta có a + b + c − 1 = d + e + f ⇔ 20 = 2 d + e + f ⇔ d + e + f = 10
Với mỗi f ∈ 1 ; 3 ; 5 ⇒ d , e có 4 cách chọn, suy ra a b c d e f ¯ có 4.3 ! = 24 cách chọn
Suy ra có 3.24 = 72 số có thể lập thỏa mãn đề bài
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
Câu 5: Từ các số 1, 2, 3, 4, 5, 6 hỏi có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số đôi một khác nhau?
A. 108
B. 90
C. 120
D. 60
SDDdd