Cho tam giác ABC vuông tại A có đường cao AH, I là trung điểm AH. Đường thẳng qua C vuông góc với BI tại K và cắt HA tại D. Chứng minh A là trung điểm DH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Xét tam giác IHK và tam giác ECK có:
IHK = ECK (=90)
KH = KC (K là trung điểm của HC)
K1 = K2 (2 góc đối đỉnh)
=> Tam giác IHK = Tam giác ECK (c.g.c) (1)
=> IH = CE (2 cạnh tương ứng) (2)
b.
Tam giác IHK = Tam giác ECK (theo 1)
=> HIK = CEK (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong
=> AH // CE
=> AIC = ICE (2 góc so le trong) (3)
IH = CE (theo 2)
mà IH = IA (I là trung điểm của HA)
=> IA = CE (4)
Xét tam giác ACI và tam giác EIC có:
IA = CE (theo 4)
IC là cạnh chung
AIC = ECI (theo 3)
=> Tam giác ACI = Tam giác EIC (c.g.c) (5)
c.
Tam giác ACI = Tam giác EIC (theo 5)
=> AC = EI (2 cạnh tương ứng) (6)
=> ACI = CIE (2 góc tương ứng) mà 2 góc này nằm ở vị trì so le trong
=> IK // AC
Tam giác IHK = Tam giác ECK (theo 1)
=> IK = EK (2 cạnh tương ứng)
=> K là trung điểm của IE
=> IK = EK = 1/2 IE
mà AC = IE (theo 6)
=> IK = 1/2 AC
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.