Tìm x biết: a) \(\sqrt{7-x}< 2\)
b) \(\sqrt{x-3}>3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xem gi
co ban nho cua toi
may bi loi unikey thong cam nha moi nguoi
hihi
a) \(\sqrt[3]{x}< 2\Leftrightarrow\left(\sqrt[3]{x}\right)^3< 2^3\Leftrightarrow x< 8\)
b) \(\sqrt[3]{2x-1}>-3\Leftrightarrow\left(\sqrt[3]{2x-1}\right)^3>\left(-3\right)^3\Leftrightarrow2x-1>-27\Leftrightarrow2x>-26\Leftrightarrow x>-13\)
c) \(\sqrt[3]{2-3x}\le1\Leftrightarrow\left(\sqrt[3]{2-3x}\right)^3\le1\Leftrightarrow2-3x\le1\Leftrightarrow3x\ge1\Leftrightarrow x\ge\frac{1}{3}\)
d) \(\sqrt[3]{3-4x}\ge5\Leftrightarrow\left(\sqrt[3]{3-4x}\right)^3\ge5^3\Leftrightarrow3-4x\ge125\Leftrightarrow4x\le-122\Leftrightarrow x\le-\frac{61}{2}\)
\(1.\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=2-\sqrt{3}+1+\sqrt{3}=3\) \(2a.\sqrt{x^2-2x+1}=7\)
⇔ \(x^2-2x+1=49\)
⇔ \(x^2-2x-48=0\)
⇔ \(\left(x+6\right)\left(x-8\right)=0\)
⇔ \(x=8orx=-6\)
\(b.\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
⇔ \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)
⇔ \(x-5=1-x\)
⇔ \(x=3\left(KTM\right)\)
KL.............
a) \(A=\left(\sqrt{6}+\sqrt{10}\right).\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=2\sqrt{2}\)
\(B=\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}+1\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+1\)
\(=\frac{4}{x-4}+1\)
\(=\frac{4}{x-4}+\frac{x-4}{x-4}=\frac{x}{x-4}\)
1/
\(B=\frac{1}{\sqrt{2}}\left(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{7}+1-\sqrt{7}+1\right)=\sqrt{2}\)
\(\Rightarrow B>1\)
Mà \(\left\{{}\begin{matrix}\sqrt[3]{4+\sqrt{7}}< \sqrt[3]{4+\sqrt{16}}=2\\\sqrt[3]{4-\sqrt{7}}>\sqrt[3]{4-\sqrt{9}}=1\end{matrix}\right.\)
\(\Rightarrow A=\sqrt[4]{4+\sqrt{7}}-\sqrt[3]{4-\sqrt{7}}< 2-1=1\)
\(\Rightarrow A< B\)
2/ ĐKXĐ: \(x\ge-3\)
Đặt \(\sqrt{x+3}=a\ge0\) ta được:
\(2x^2+a^2=3ax\Leftrightarrow2x^2-3ax+a^2=0\)
\(\Leftrightarrow\left(x-a\right)\left(2x-a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=a\\2x=a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{x+3}\\2x=\sqrt{x+3}\end{matrix}\right.\) (\(x\ge0\))
\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+3\\4x^2=x+3\end{matrix}\right.\) \(\Leftrightarrow...\)
Bài làm:
a) \(\sqrt{x}>1\Leftrightarrow\left(\sqrt{x}\right)^2>1^2\Rightarrow x>1\)
Vậy \(x>1\)
b) đk: \(x\ge0\)
Ta có: \(\sqrt{x}< 3\Leftrightarrow\left(\sqrt{x}\right)^2< 3^2\Rightarrow x< 9\)
Vậy \(0\le x< 9\)
b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)
\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)
\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)
a) \(\sqrt{x}>1\Leftrightarrow x>1\)
b) \(\sqrt{x}< 3\Leftrightarrow x< 9\)
Vì x không âm nên x={0;1;2;3;4;5;6;7;8}
a)\(\sqrt{x}>1\Leftrightarrow\sqrt{x^2}>1^2\Leftrightarrow x>1\)
b)\(\sqrt{x}< 3\Leftrightarrow\sqrt{x^2}< 3^2\Leftrightarrow x< 9\)
a, \(\sqrt{7-x}< 2\)ĐK :\(x\le7\)
bình phương 2 vế ta được :
\(\Leftrightarrow7-x< 4\Leftrightarrow-x< -3\Leftrightarrow x>3\)
Kết hợp với đk vậy \(3< x\le7\)
b, \(\sqrt{x-3}>3\)ĐK : \(x\ge3\)
bình phương 2 vế ta được :
\(\Leftrightarrow x-3>9\Leftrightarrow x>12\)
kết hợp với đk vậy \(3\le x< 12\)