giúp e với ạ e đang cần gấp cảm ơn mọi người nhiều :(
Cho tam giác ABC nhọn có 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh tam giác BHF đồng dạng với tam giác CHE và suy ra HE.HB=HC.HF
b) Chứng minh tam giác AEF đồng dạng với tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
Giải
a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:
\(\widehat{BHF}=\widehat{CHE}\) (vì đối đỉnh)
\(\widehat{BFH}=\widehat{CEH}=90^o\)
=> \(\Delta BHF\) \(\Delta CHE\) (g - g)
b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{A}\) là góc chung
\(\widehat{AEB}=\widehat{AFC}=90^o\)
=> \(\Delta ABE\) \(\Delta ACF\) (g - g)
=> \(\frac{AB}{AC}=\frac{AE}{AF}\)
=> AF . AB = AE . AC
c) Xét \(\Delta AEF\) và \(\Delta ABC\) có:
\(\widehat{A}\) là góc chung
\(\frac{AE}{AB}=\frac{AF}{AC}\) (vì \(\Delta ABE\) \(\Delta ACF\))
=> \(\Delta AEF\) \(\Delta ABC\) (c - g - c)
d) Câu d mình không nghĩ ra. Bạn tự làm nha, chắc là xét tam giác đồng dạng rồi suy ra hai góc bằng nhau và sẽ suy ra đường phân giác đó.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF;AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng vói ΔABC
=>\(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ABC}=4\cdot S_{AEF}\)
a) Xét ΔAEH vuông tại E và ΔBDH vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)
Do đó: ΔAEH\(\sim\)ΔBDH(g-g)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
b: ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC và AE*AC=AB*AF
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
a) Xét \(\Delta ABE\) và \(\Delta ACF:\)
\(\widehat{A}chung.\\ \widehat{AEB}=\widehat{AFC}\left(=90^o\right).\\ \Rightarrow\Delta ABE\sim\Delta ACF\left(g-g\right).\)
b) Xét \(\Delta AEF\) và \(\Delta ABC:\)
\(\widehat{A}chung.\\ \dfrac{AE}{AB}=\dfrac{AF}{AC}\left(\Delta ABE\sim\Delta ACF\right).\\ \Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right).\)
TK
https://hoc24.vn/cau-hoi/bai-1-cho-d-abc-cac-duong-cao-be-va-cf-cat-nhau-tai-ha-chung-minh-tam-giac-abe-dong-dang-voi-tam-giac-afcb-chung-minh-tam-giac-aef-dong-dang-voi.5075521880097
a.
Do BE, CF là các đường cao \(\Rightarrow\widehat{BFH}=\widehat{CEH}=90^0\)
Xét hai tam giác BHF và CHE có:
\(\left\{{}\begin{matrix}\widehat{BFH}=\widehat{CEH}=90^0\\\widehat{BHF}=\widehat{CHE}\left(\text{đối đỉnh}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta BHF\sim\Delta CHE\left(g.g\right)\)
\(\Rightarrow\dfrac{HB}{HC}=\dfrac{HF}{HE}\Rightarrow HE.HB=HC.HF\)
b.
Xét hai tam giác BAE và CAF có:
\(\left\{{}\begin{matrix}\widehat{A}-chung\\\widehat{BEA}=\widehat{CFA}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta BAE\sim\Delta CAF\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AF}=\dfrac{AB}{AC}\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét hai tam giác AEF và ABC có:
\(\left\{{}\begin{matrix}\widehat{A}-chung\\\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)