giúp em bài cuối thôi em cảm ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM⊥AB
Bài 14:
a)
Sửa đề: \(AE\cdot AB=AD\cdot AC\)
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔADB\(\sim\)ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
hay \(AE\cdot AB=AD\cdot AC\)(đpcm)
b) Ta có: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(cmt)
nên \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADB vuông tại D có
\(\cos\widehat{A}=\dfrac{AD}{AB}\)
Xét ΔAED và ΔACB có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔAED∼ΔACB(c-g-c)
Suy ra: \(\dfrac{AD}{AB}=\dfrac{ED}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AD}{AB}\cdot BC=DE\)
\(\Leftrightarrow DE=BC\cdot\cos\widehat{A}\)(đpcm)
c) Ta có: \(DE=BC\cdot\cos\widehat{A}\)(cmt)
nên \(DE=BC\cdot\cos60^0=\dfrac{1}{2}BC\)(1)
Ta có: ΔEBC vuông tại E(gt)
mà EM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(EM=\dfrac{1}{2}BC\)(2)
Ta có: ΔDBC vuông tại D(gt)
mà DM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(DM=\dfrac{1}{2}BC\)(3)
Từ (1), (2) và (3) suy ra ME=MD=DE
hay ΔMDE đều(đpcm)
24 B
25 C
26 B
27 C
28 A
29 D
30 C
31 A
32 C
33 B
34 B
35 D
36 C
37 C
38 B
39 C
1.A 2.B 3. D 4. C 5.B 6. A 7. D 8. C 9. D 10. B
11 B 12 D 13 C 14 A 15 C 16 A 17 D 18 B 19 B 20 C
21 A
22 A
c) Để hàm số cắt trục tung tại điểm có tung độ âm thì:
m - 5 < 0
m < 0+ 5
m < 5 (nhận)
Vậy m < 5 và m ≠ 1 thì đồ thị của hàm số cắt trục tung tại điểm có tung độ âm
Gọi \(d=ƯC\left(2n+1;4n-2\right)\)
Do \(2n+1\) lẻ \(\Rightarrow d\) lẻ
Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\4n-2⋮d\end{matrix}\right.\)
\(\Rightarrow2\left(2n+1\right)-\left(4n-2\right)⋮d\)
\(\Rightarrow4⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\\d=4\end{matrix}\right.\)
Mà d lẻ \(\Rightarrow d=1\)
\(\Rightarrow\dfrac{2n+1}{4n-2}\) tối giản