Tìm max của Q = x2.(3-x) vs x >=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{x^3+y^3}{x^3y^3}=\dfrac{\left(x+y\right)\left(x^2+y^2-xy\right)}{x^3y^3}=\dfrac{x^2y^2\left(x+y\right)}{x^3y^3}=\dfrac{x+y}{xy}=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{x^2+y^2-xy}=\dfrac{4\left(x^2+y^2-xy\right)-3\left(x^2+y^2-2xy\right)}{x^2+y^2-xy}\)
\(=4-\dfrac{3\left(x-y\right)^2}{x^2+y^2-xy}\le4\)
\(P_{max}=4\) khi \(x=y=\dfrac{1}{2}\)
\(y=\frac{x}{x^2+2}\le\frac{x}{2\sqrt{2x^2}}=\frac{1}{2\sqrt{2}}\)
Dấu "=" xảy ra khi \(x^2=2\Rightarrow x=\sqrt{2}\)
\(x^2-2\left(m-3\right)x+m^2-5m+6=0\)(1)
Để phương trình có hai nghiệm \(x_1,x_2\)thì:
\(\Delta'\ge0\Leftrightarrow\left(m-3\right)^2-\left(m^2-5m+6\right)=m^2-6m+9-\left(m^2-5m+6\right)=-m+3\ge0\)
\(\Leftrightarrow m\le3\)
Với \(m\le3\)phương trình (1) có hai nghiệm \(x_1,x_2\)nên theo định lí Viete ta có:
\(\hept{\begin{cases}x_1+x_2=2m-6\\x_1x_2=m^2-5m+6\end{cases}}\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-3\right)^2-2\left(m^2-5m+6\right)\)
\(=2m^2-14m+24=40\)
\(\Leftrightarrow m^2-7m-8=0\)
\(\Leftrightarrow\left(m-8\right)\left(m+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=8\left(l\right)\\m=-1\left(tm\right)\end{cases}}\)
\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\)
\(=-\left(m^2-4m+4-4\right)-3=-\left(m-2\right)^2+1\)
Để pt trên có 2 nghiệm x1 ; x2 khi \(0\le-\left(m-2\right)^2+1\le1\)
Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2+x_1x_2\)
\(=4m^2+2m^2-4m+3=6m^2-4m+4\)
bạn kiểm tra lại đề xem có vấn đề gì ko ?
\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\ge0\Rightarrow1\le m\le3\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2+x_1x_2\)
\(=\left(2m\right)^2+2m^2-4m+3\)
\(=6m^2-4m+3\)
Xét hàm \(f\left(m\right)=6m^2-4m+3\) trên \(\left[1;3\right]\)
\(-\dfrac{b}{2a}=\dfrac{1}{3}< 1;a=6>0\Rightarrow f\left(m\right)\) đồng biến trên \(\left[1;3\right]\)
\(\Rightarrow f\left(m\right)_{max}=f\left(3\right)=45\) khi \(m=3\)