K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\overrightarrow{AB}=\left(-4;3\right)AC;=\left(-2;0\right)\)

Vì -2/-4<>0/3

nên A,B,C không thẳng hàng

=>A,B,C là ba đỉnh của một tam giác

b: A là trung điểm của EC

=>\(\left\{{}\begin{matrix}x_E+1=2\cdot3=6\\y_E-1=2\cdot\left(-1\right)=-2\end{matrix}\right.\Leftrightarrow E\left(5;-1\right)\)

c: A là trọng tâm của tam giác BCG

=>\(\left\{{}\begin{matrix}-1+1+x_G=3\cdot3=9\\2-1+y_G=3\cdot\left(-1\right)=-3\end{matrix}\right.\Leftrightarrow G\left(9;-4\right)\)

d: ADBC là hình bình hành

=>vecto AD=vecto CB

vecto CB=(-2;3)

vecto AD=(x-3;y+1)

Do đó, ta có:

x-3=-2 và y+1=3

=>x=1 và y=2

=>D(1;2)

f: Tọa độ H là;

\(\left\{{}\begin{matrix}x=\dfrac{3-1+1}{3}=1\\y=\dfrac{-1+2-1}{3}=0\end{matrix}\right.\)

27 tháng 8 2023

cảm ơn anh:))

 

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{3}y=\dfrac{7}{3}\\x-\dfrac{1}{2}y=-\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{6}y=\dfrac{5}{2}\\x+\dfrac{1}{3}y=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{4}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2022

Lời giải:

Lấy PT(1) trừ PT(2) theo vế:

$\frac{y}{3}+\frac{y}{2}=\frac{7}{3}+\frac{1}{6}$

$\Leftrightarrow \frac{5}{6}y=\frac{5}{2}$
$\Leftrightarrow y=3$

$x=\frac{7}{3}-\frac{y}{3}=\frac{7}{3}-1=\frac{4}{3}$

28 tháng 6 2021

Giúp em giải với huhu 

a: Xét ΔABC có 

BD là đường cao

CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

hay AM⊥BC

Xét ΔAEC vuông tại E và ΔADB vuông tại D có

góc EAC chung

Do đó: ΔAEC\(\sim\)ΔADB

b: Xét ΔAED và ΔACB có

AE/AC=AD/AB

góc EAD chung

Do đó: ΔAED\(\sim\)ΔACB

21 tháng 12 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

21 tháng 12 2021

Có thể giúp em câu b và c luôn được không ạ?😢

7 tháng 2 2022

Giả sử đường thẳng chắn trên hai trục tọa độ 2 đoạn bằng nhau bằng a \(\left(a\ne0\right)\)

Khi đó, tọa độ giao điểm là: (a;0), (0;a)

Phương trình đường thẳng là: \(\dfrac{x-a}{a-0}=\dfrac{y-0}{0-a}\Leftrightarrow-a\left(x-a\right)=ay\)

\(\Leftrightarrow-x+a=y\) (*)

a. Thay M(-4;10) vào (*) ta được: \(-\left(-4\right)+a=10\Rightarrow a=6\)

Phương trình đường thẳng cần tìm là: y=-x+6

b. Thay M(2;1) vào (*) ta được: \(-2+a=1\Rightarrow a=3\)

Phương trình đường thẳng cần tìm là: y=-x+3