\(\sqrt{\frac{\gamma+1}{\left(\chi+2\right)^2}}\sqrt{\frac{\left(\chi-2\right)^6}{y^2-2\gamma+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A\left(\dfrac{1}{2}\right)=-2\cdot\dfrac{1}{8}+3\cdot\dfrac{1}{4}+5=\dfrac{11}{2}\)
\(A\left(1\right)=-2+3+5=6\)
\(A\left(-1\right)=2+3+5=10\)
\(A\left(0\right)=-2\cdot0+3\cdot0+5=5\)
\(A\left(-3\right)=-2\cdot\left(-27\right)+3\cdot9+5=86\)
b: Khi x=2 và y=1 thì
\(B=-3\cdot8\cdot1+2\cdot4-2\cdot2=-20\)
Khi x=-2 và y=1 thì
\(B=-3\cdot\left(-8\right)\cdot1+2\cdot4-2\cdot\left(-2\right)=36\)
\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
\(=\sqrt{\frac{3+2\sqrt{3}\sqrt{2}+2}{3-2\sqrt{3}\sqrt{2}+2}}+\sqrt{\frac{3-2\sqrt{3}\sqrt{2}+2}{3+2\sqrt{3}\sqrt{2}+2}}\)
\(=\sqrt{\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)^2}}+\sqrt{\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}+\sqrt{3}\right)^2}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)}+\frac{\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)}\)\
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{5+2\sqrt{6}+5-2\sqrt{6}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=10\)
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-3\)
\(=\sqrt{3}-1\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
\(\Rightarrow\left|a\right|\le1\),\(\left|b\right|\le1\),\(\left|c\right|\le1\)
\(\Rightarrow1-a\ge0\)tương tự 1-b,1-c............
\(\Rightarrow\left(1\right)\ge0\)
dấu = khi a=1b=0c=0 và hoán vị
\(\sqrt{\frac{y+1}{\left(x+2\right)^2}}.\sqrt{\frac{\left(x-2\right)^6}{y^2-2y+1}}\)
\(=\frac{\sqrt{y+1}}{x+2}\sqrt{\frac{\left(x-2\right)^6}{\left(y-1\right)^2}}\)
\(=\frac{\sqrt{y+1}}{x+2}.\frac{\left(x-2\right)^6}{y-1}\)
\(=\frac{-\left(x-2\right)^5\sqrt{y+1}}{y-1}\)