K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Hình như thừa số 2

Áp dụng BĐT AM-GM ta có:

\(VT=\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\left(abc\right)^2}=3\sqrt[3]{\left(abc\right)^3}=VP\)

Xảy ra khi \(a=b=c\)

9 tháng 5 2018

Mọi người giúp em vs!! e cần gấp lm!! thankiu trc ak!!!

31 tháng 3 2015

1) 32012 - 32011 + 32010 - 32009 + 32008 = 32008 .(34 - 33 + 32 - 31 + 1) = 32008 . (81-27 + 9 - 3 + 1) =  32008 .61

Vì 32008 = (34)502 = 81502 => 32008  có tận vùng bằng 1 , nhân với 61

=> tổng ban đầu có tận cùng bằng 1 => tổng đó ko chia hết cho 10=> bạn xem lại đề

1.Cho tam giác ABC có ^ABC = ^ACB = 45'. Qua A kẽ đg thẳng d sao cho B và C nằm cùng phía đối với đg thẳng d. Kẻ BH và CK cùng _|_  với d ( H thuộc d, K thuộc d )a) CMR AH = CK. Từ đó => HK = BH + CKb) Gọi m là trung điểm của BC. CMR MH = MK2.a) cmr nếu a/b = c/d thì 2014a + 20115b/2014a - 2015b = 2014c + 2015d/2014c - 2015d. Dả thiết các tỉ số đều có nghĩa   b) tìm các số nguyên x, y thỏa mãn 25 - y^2 = 8(x - 2014)^23.Cho tam...
Đọc tiếp

1.Cho tam giác ABC có ^ABC = ^ACB = 45'. Qua A kẽ đg thẳng d sao cho B và C nằm cùng phía đối với đg thẳng d. Kẻ BH và CK cùng _|_  với d ( H thuộc d, K thuộc d )

a) CMR AH = CK. Từ đó => HK = BH + CK

b) Gọi m là trung điểm của BC. CMR MH = MK

2.a) cmr nếu a/b = c/d thì 2014a + 20115b/2014a - 2015b = 2014c + 2015d/2014c - 2015d. Dả thiết các tỉ số đều có nghĩa

   b) tìm các số nguyên x, y thỏa mãn 25 - y^2 = 8(x - 2014)^2

3.Cho tam giác ABC có ^A = 60'. Các đg phân giác BD ( D thuộc AC ) và  CE ( E thuộc AB ) cắt nhau tại I. Trên cạnh BC lấy điểm M sao cho BM = BE. CMR:

a) IE = IM

b) BC = BE + CD

4.Cho tam giác ABC có AB < AC .Gọi M là trung điểm của BC, từ M kẻ đg thẳng _|_ với tia phân giác của ^A cắt các đg thẳng AB, AC lần lượt tại E va F. Chứng minh rằng:

a) AE = AF

b) AE = AB + AC / 2

0
NV
10 tháng 12 2021

a.

\(\Leftrightarrow8x^3+8x=8y^2\)

\(\Leftrightarrow x\left(x^2+1\right)=y^2\)

Gọi \(d=ƯC\left(x;x^2+1\right)\)

\(\Rightarrow x^2+1-x.x⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow x\) và \(x^2+1\) nguyên tố cùng nhau

\(\Rightarrow\left\{{}\begin{matrix}x=m^2\\x^2+1=n^2\end{matrix}\right.\)

\(x^2+1=n^2\Rightarrow\left(n-x\right)\left(n+x\right)=1\)

\(\Rightarrow x=0\)

\(\Rightarrow y=0\)

NV
10 tháng 12 2021

TH1: a;b;c đồng dư khi chia 3 \(\Rightarrow a+b+c⋮3\)

TH2: 3 số a;b;c có số dư đôi một khác nhau khi chia cho 3 \(\Rightarrow a+b+c⋮3\)

TH3: 3 số a;b;c có 2 số đồng dư khi chia 3, một số khác số dư. Không mất tính tổng quát, giả sử \(a,b\) đồng dư khi chia 3 còn c khác số dư

\(\Rightarrow\left(a-b\right)^2⋮3\) còn \(\left(a-c\right)^2+\left(b-c\right)^2\) chia 3 luôn dư 1 hoặc 2

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2⋮̸3\)  (1)

Mặt khác từ giả thiết:

\(\left\{{}\begin{matrix}b^2-ac+3ac⋮3\\c^2-ab-3ab⋮3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b^2-ac⋮3\\c^2-ab⋮3\end{matrix}\right.\)

\(\Rightarrow2\left(a^2-bc\right)+2\left(b^2-ac\right)+2\left(c^2-ab\right)⋮3\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2⋮3\) trái với (1) ktm

Vậy \(a+b+c⋮3\)