Cho ΔABC nội tiếp đường tròn (O). CMR :Nếu AB = AC thì AO vuông góc với BC,
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: ΔOAB cân tại O
mà OM là đường cao
nên M là trung điểm của AB
ΔOAC cân tại O
mà ON là đường cao
nên N là trung điểm của AC
=>NM là đừog trung bình
=>MN//BC
=>MN//AE
=>AMNE là hình thang cân
=>AM=EN; AN=EM
ΔAHB vuông tại H có HM là trung tuyến
nên HM=AB/2=MA=MB
ΔHAC vuông tại H có HN là trung tuyến
nên HN=AN=CN=AC/2
=>HM=EN; HN=EM
=>HMEN là hình bbình hành
=>K làtrung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
3: goc MDE+gó MDH=180 độ
=>góc MDE=góc MBH
=>BMDH nội tiếp
=>góc MDB=góc MHB=góc MBH
=>góc MDB=góc MDE
=>DM là phân giác của góc BDE
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: Gọi giao EO và BC là P
AE//BC
AE vuông góc OE
=>OE vuông góc BC
=>OP vuông góc BC
=>P là trung điểm của BC
AEPH là hình chữ nhật
=>AE=PH
EJ giao BC=J
=>AE=JC
=>JC=HP
=>HJ=PC=BC/2=MN
=>HMNJ là hình bình hành
=>HM//NJ và HM=NJ
=>HM//EN và HM=EN
=>EMHN là hbh
=>K là trung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
a) Xét tứ giác DFEC có
\(\widehat{DFC}=\widehat{DEC}\left(=90^0\right)\)
\(\widehat{DFC}\) và \(\widehat{DEC}\) là hai góc cùng nhìn cạnh DE
Do đó: DFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b: Xét (O) có
OH là một phần đường kính
AD là dây
OH\(\perp\)AD tại H
Do đó: H là trung điểm của AD
Suy ra: \(AH\cdot HD=AH^2\left(1\right)\)
Xét (O) có
ΔBAC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBAC vuông tại A
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot HC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot HD=HB\cdot HC\)
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
A B C O I K H Q D
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
kẻ đường kính AA' của đường tròn tâm O
Xét đường tròn tâm O có góc ABC=AA'C ( cùng chắn cung AC) (1)
Có tứ giác BEFC nội tiếp đường tròn đường kính BC
=> góc ABC=AFE ( cùng bù với góc EFC ) (2)
từ (1) và (2) => góc AFE = AA'C
Gọi giao điểm của OA và EF là H
Xét tam giác AHF và ACA'
có góc A'AC chung
góc AFE=AA'C (cmt)
=> tam giác AHF đồng dạng ACA'
=> góc AHF = ACA'
mà góc ACA' = 90 độ ( góc nt chắn nửa đg tròn )
=> góc AHF = 90 độ
=> OA vuông góc EF
Tự vẽ hình nhé!
\(AB=AC\Rightarrow\Delta ABC\) cân tại A
Ta có: \(\Delta OAC=\Delta OAB\left(c-c-c\right)\) \(\Rightarrow\widehat{A_1}=\widehat{A_2}\)
Xét \(\Delta ACI,\Delta ABI\) có:
\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)
\(AB=AC\left(gt\right)\)
AI cạnh chung
\(\Rightarrow\Delta ACI=\Delta ABI\left(c-g-c\right)\) \(\Rightarrow IC=IB\)
\(\Rightarrow AI\) là trung tuyến của \(\Delta ABC\)
Mặt khác: OI cũng là trung tuyến \(\Delta ABC\) ( do xét trong \(\Delta OCB\))
\(\Rightarrow A,O,I\) thẳng hàng
Mà: \(AI\perp BC\) ( vì \(\Delta ABC\) có AI trung tuyến)
\(\Rightarrow OA\perp BC\)
Cách khác:
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC(Đpcm)