cho hàm số y=x^4-4x^2+3 cănx +2-1/x. khi đó:
a, y'(1)=-3/2
b, đồ thị hàm số y' đi qua điểm A (1;3/2)
c, y'(4)=3597/16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y'=1/3*3x^2-2x+3=x^2-2x+3=(x-1)^2+2>0
=>y=1/3x^3-x^2+3x+4 luôn đồng biến trên từng khoảng xác định
\(y=\sqrt{x^2+4}\)
=>\(y'=\dfrac{-\left(x^2+4\right)'}{\left(x^2+4\right)^2}=\dfrac{-\left(2x\right)}{\left(x^2+4\right)^2}\)
=>Hàm số này không đồng biến trên từng khoảng xác định
\(y=x^3+4x-sinx\)
=>y'=3x^2+4-cosx
-1<=-cosx<=1
=>3<=-cosx+4<=5
=>y'>0
=>Hàm số luôn đồng biến trên từng khoảng xác định
y=x^4+x^2+2
=>y'=4x^3+2x=2x(2x^2+1)
=>Hàm số ko đồng biến trên từng khoảng xác định
- Hàm số\(y = 4x - 7\) là hàm số bậc nhất vì hàm số có dạng \(y = ax + b\)với \(a,b\) là các số cho trước và \(a \ne 0\). Hệ số \(a = 4;b = - 7\).
- Hàm số \(y = {x^2}\) không là hàm số bậc nhất vì hàm số không có dạng \(y = ax + b\)với \(a,b\) là các số cho trước và \(a \ne 0\).
- Hàm số \(y = - 6x - 4\)là hàm số bậc nhất vì hàm số có dạng \(y = ax + b\)với \(a,b\) là các số cho trước và \(a \ne 0\). Hệ số \(a = - 6;b = - 4\).
- Hàm số \(y = 4x\)là hàm số bậc nhất vì hàm số có dạng \(y = ax + b\)với \(a,b\) là các số cho trước và \(a \ne 0\). Hệ số \(a = 4;b = 0\).
- Hàm số \(y = \dfrac{3}{x}\) không là hàm số bậc nhất vì hàm số không có dạng \(y = ax + b\)với \(a,b\) là các số cho trước và \(a \ne 0\).
- Hàm số \(s = 5v + 8\) là hàm số bậc nhất vì hàm số có dạng \(s = av + b\)với \(a,b\) là các số cho trước và \(a \ne 0\). Hệ số \(a = 5;b = 8\).
- Hàm số \(m = 30n - 25\) là hàm số bậc nhất vì hàm số có dạng \(m = an + b\)với \(a,b\) là các số cho trước và \(a \ne 0\). Hệ số \(a = 30;b = - 25\).
`a)TXĐ:R\\{1;1/3}`
`y'=[-4(6x-4)]/[(3x^2-4x+1)^5]`
`b)TXĐ:R`
`y'=2x. 3^[x^2-1] ln 3-e^[-x+1]`
`c)TXĐ: (4;+oo)`
`y'=[2x-4]/[x^2-4x]+2/[(2x-1).ln 3]`
`d)TXĐ:(0;+oo)`
`y'=ln x+2/[(x+1)^2].2^[[x-1]/[x+1]].ln 2`
`e)TXĐ:(-oo;-1)uu(1;+oo)`
`y'=-7x^[-8]-[2x]/[x^2-1]`
Lời giải:
a.
$y'=-4(3x^2-4x+1)^{-5}(3x^2-4x+1)'$
$=-4(3x^2-4x+1)^{-5}(6x-4)$
$=-8(3x-2)(3x^2-4x+1)^{-5}$
b.
$y'=(3^{x^2-1})'+(e^{-x+1})'$
$=(x^2-1)'3^{x^2-1}\ln 3 + (-x+1)'e^{-x+1}$
$=2x.3^{x^2-1}.\ln 3 -e^{-x+1}$
c.
$y'=\frac{(x^2-4x)'}{x^2-4x}+\frac{(2x-1)'}{(2x-1)\ln 3}$
$=\frac{2x-4}{x^2-4x}+\frac{2}{(2x-1)\ln 3}$
d.
\(y'=(x\ln x)'+(2^{\frac{x-1}{x+1}})'=x(\ln x)'+x'\ln x+(\frac{x-1}{x+1})'.2^{\frac{x-1}{x+1}}\ln 2\)
\(=x.\frac{1}{x}+\ln x+\frac{2}{(x+1)^2}.2^{\frac{x-1}{x+1}}\ln 2\\ =1+\ln x+\frac{2^{\frac{2x}{x+1}}\ln 2}{(x+1)^2}\)
e.
\(y'=-7x^{-8}-\frac{(x^2-1)'}{x^2-1}=-7x^{-8}-\frac{2x}{x^2-1}\)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.