Tim x
a) (x-5)^4 = (x-5)^6
b) a^x = a^50
c) x^2a = x^a+1
d)1 + 2 + 3 + ... + x = 222111
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>x+7/4=6:2/3=9
=>x=29/4
b: =>x:5/3=7/5
=>x=7/5*5/3=7/3
c:=>x+1/6=5/3
=>x=10/6-1/6=3/2
d: =>x+4/5=4/5+3/7+3/5
=>x=3/7+3/5=36/35
e: =>x/35=4/5-5/7=3/35
=>x=3
f: =>13/28+x=1/2
=>x=1/28
g: =>1/3-x=1/9
=>x=2/9
\(a,A=1+3+3^2+...+3^{125}\\ \Rightarrow3A=3+3^2+3^3+...+3^{126}\\ \Rightarrow2A=3^{126}-1\\ \Rightarrow A=\dfrac{3^{126}-1}{2}\\ c,2A=3^{2x}-1\\ \Rightarrow3^{126}-1=3^x-1\\ \Rightarrow x=126\)
\(d,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{124}+3^{125}\right)\\ A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{124}\left(1+3\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{124}\right)\\ A=4\left(1+3^2+...+3^{124}\right)⋮4\)
a: =>x=-7/6+5/8=-13/24
b: =>x=-14/25-3/4=-131/100
c: \(x=\dfrac{-33}{26}:\dfrac{-9}{13}=\dfrac{33}{26}\cdot\dfrac{13}{9}=\dfrac{11}{3}\cdot\dfrac{1}{2}=\dfrac{11}{6}\)
d: \(x=\dfrac{4}{9}:\dfrac{5}{3}=\dfrac{4}{9}\cdot\dfrac{3}{5}=\dfrac{12}{45}=\dfrac{4}{15}\)
\(a,=3x-9-4x+12=-x+3=0\)
\(\Leftrightarrow x=3\)
Vậy ..
\(b,=\left(x+2\right)\left(x+2-x+2\right)=4\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy ..
\(c,=x^3-3x^2+3x-1=\left(x-1\right)^3=0\)
\(\Leftrightarrow x=1\)
Vậy ..
\(d,\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy ..
\(e,=\left(2x-3-5\right)\left(2x-3+5\right)=\left(2x-8\right)\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{2}=4\\x=-\dfrac{2}{2}=-1\end{matrix}\right.\)
Vậy ...
a) Ta có: 3(x-3)-4x+12=0
\(\Leftrightarrow3\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow x-3=0\)
hay x=3
Vậy: S={3}
b) Ta có: \(\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4=0\)
\(\Leftrightarrow4x=-8\)
hay x=-2
Vậy: S={-2}
c) Ta có: \(x^3+3x=3x^2+1\)
\(\Leftrightarrow x^3-3x^2+3x-1=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Vậy: S={1}
d) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: S={0;2;-2}
Bài 1:
c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)
\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)
Suy ra: \(-12x-3=8x-2-6x-8\)
\(\Leftrightarrow-12x-3-2x+10=0\)
\(\Leftrightarrow-14x+7=0\)
\(\Leftrightarrow-14x=-7\)
\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
Ta có : \(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\Rightarrow\left(x-5\right)^4-\left(x-5\right)^6=0\)
\(\Leftrightarrow\left(x-5\right)^4\left[1-\left(x-5\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^4=0\\1-\left(x-5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\\left(x-5\right)=-1;1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=4;6\end{cases}}\)
Vậy x = {4;5;6}.
b) Ta có : ax = a50
=> x = 50
d) Ta có : 1 + 2 + 3 + ..... + x = 222111
=> \(\frac{\left[\left(x-1\right):1+1\right]\left(x+1\right)}{2}=222111\)
=> \(\frac{x\left(x+1\right)}{2}=222111\)
=> x(x + 1) = 444222
=> x(x + 1) = 666.667
=> x = 666
Vậy x = 666.