Event Lac Dit My Den Dong Tinh
Nhan nhip My den da den giam gia soc 95% 
co su gop mat cua kevin durant lebron james va ishowspeed va ronaldo
Chuc cac ban hoc tot cung My den
YEU CAU: DA DEN, CHIM TO (MCK + 6)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

Kẽ phân giác AD của tam giác ABC, \(AD=l\)

Ta có:

\(S_{ABC}=S_{ABD}+S_{ACD}=\frac{c.l.sin\frac{A}{2}}{2}+\frac{b.l.sin\frac{A}{2}}{2}=\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\left(1\right)\)

Ta lại có:

\(\frac{a.l}{2}\ge\frac{a.h_a}{2}=S_{ABC}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a.l}{2}\ge\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\)

\(\Leftrightarrow sin\frac{A}{2}\le\frac{a}{b+c}\le\frac{a}{2\sqrt{bc}}\)

25 tháng 9 2017

bài bạn alibaba kiểu zì zì tam giác ban đầu đã vuông đâu

15 tháng 9 2016

A B C H K M

Ta có : \(Sin\frac{A}{2}=Sin\widehat{BAM}=Sin\widehat{CAM}=\frac{BH}{AB}=\frac{CK}{CA}\)

\(\Rightarrow sin\frac{A}{2}=\frac{BH}{b}=\frac{CK}{c}\Rightarrow sin^2\frac{A}{2}=\frac{BH.CK}{bc}\)

Lại có : \(BH\le BM;CK\le CM\) 

\(\Rightarrow sin^2\frac{A}{2}\le\frac{BM.CM}{bc}\le\frac{\frac{\left(BM+CM\right)^2}{4}}{bc}=\frac{\frac{BC^2}{4}}{bc}=\frac{a^2}{4bc}\)

\(\Rightarrow sin\frac{A}{2}\le\frac{a}{2\sqrt{bc}}\) (đpcm)

 

4 tháng 8 2016

minh biet lam cau b)

A B C D N M

ke phan giac AD  , BM vuong goc AD , CN vuong goc AD

sin \(\frac{A}{2}\) =\(\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\)

ma BM\(\le BD,CN\le CD\Rightarrow BM+CN\le BC\)

=> sin \(\frac{A}{2}\le\frac{BC}{AB+AC}\le\frac{a}{b+c}\)

dau = xay ra  <=> AD vuong goc BC  => AD la duong phan giac ,la  duong cao  => tam giac ABC can tai  A => AB=AC => b=c

tương tự sin \(\frac{B}{2}\le\frac{b}{a+c};sin\frac{C}{2}\le\frac{c}{a+b}\)

=>\(sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{a\cdot b\cdot c}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\)

ap dung cosi cjo 2 so duong   b+c\(\ge2\sqrt{bc};c+a\ge2\sqrt{ac};a+b\ge2\sqrt{ab}\)

=> \(\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge8abc\)

\(\Rightarrow sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{abc}{8abc}=\frac{1}{8}\)

dau = xay ra <=> a=b=c hay tam giac ABC deu

5 tháng 8 2016

nhìn bài toán kho hiểu nhỉ ???

18 tháng 8 2019

a) Xét 2 tam giác vuông AMB và ANC có: \(\widehat{MAB}=\widehat{NAC}\) ( do AD là tia phân giác ^A ) 

\(\Rightarrow\)\(\Delta AMB~\Delta ANC\) ( g-g ) \(\Rightarrow\)\(\frac{BM}{AB}=\frac{CN}{AC}\)

b) Theo bđt 3 điểm ta có: \(\hept{\begin{cases}BM+DM\le BD\\CN+DN\le CD\end{cases}}\)\(\Rightarrow\)\(BM+CN+DM+DN\le BC\)

\(\Rightarrow\)\(BM+CN\le BC\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}M\in BD,AD\\N\in CD,AD\end{cases}}\)\(\Rightarrow\)\(M\equiv N\equiv D\)\(\Rightarrow\)\(BD\perp AD;CD\perp AD\) hay tam giác ABC có AD vừa là đường phân giác vừa là đường cao => tam giác ABC cân tại A 

c) Có: \(\sin\left(\frac{A}{2}\right)=\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\le\frac{BC}{AB+AC}\le\frac{BC}{2\sqrt{AB.AC}}\)

Dấu "=" xảy ra khi tam giác ABC cân tại A 

13 tháng 9 2015

a) Xét tam giác vuông \(\Delta ABD\to\tan B=\frac{AD}{BD}.\)  

Xét tam giác vuông \(\Delta ACD\to\tan C=\frac{AD}{CD}.\)

Vậy \(\tan B\cdot\tan C=\frac{AD}{BD}\cdot\frac{AD}{CD}=\frac{AD^2}{BD\cdot CD}.\)
Mặt khác \(\Delta DHB\sim\Delta DCA\) (g.g), ta suy ra \(\frac{DH}{DB}=\frac{DC}{DA}\to DB\cdot DC=DH\cdot DA.\) Thành thử 
\(\tan B\cdot\tan C=\frac{AD^2}{BD\cdot CD}=\frac{AD^2}{DH\cdot DA}=\frac{AD}{HD}.\)

b.  Theo chứng minh trên \(DH\cdot DA=DB\cdot DC\le\left(\frac{DB+DC}{2}\right)^2=\frac{BC^2}{4}.\)

c.  Đề bài không đúng, đề nghị tác giả xem lại đề!

25 tháng 6 2021

A B' C B C' K y x b c D H N A/2

- Dựng phân giác AD của góc A . Sau đó dựng BB' và CC' vuông góc với AD 

- Đặt BB' = x , CC' = y . Ta có :

+) \(\Delta ABB'\)cân tại A \(sin\frac{A}{2}=\frac{x}{2c}\)

+) \(\Delta ACC'\)cân tại A \(sin\frac{A}{2}=\frac{y}{2b}\)

\(\Rightarrow sin^2\frac{A}{2}=\frac{xy}{4bc}\)

Để cm(1) , ta cần cm : \(xy\le a^2\)

+) Trong tam giác BHD vuông tại H ta có : \(BH\le CD\)hay \(\frac{x}{2}\le BD\)

+) Trong tam giác CKD vuông tại K ta có : \(CK\le CH\)hay \(\frac{y}{2}\le CD\)

\(\Rightarrow a=BD+CD\ge\frac{x+y}{2}\ge\sqrt{xy}\)

\(\Rightarrow a^2\ge xy\left(đpcm\right)\)

25 tháng 6 2021

A B C D E F

Kẻ phân giác AD của tam giác ABC (D nằm trên đoạn BC)

Từ B,C kẻ các đường vuông góc với đường thẳng AD tại E,F

Khi đó ta có: \(\sin\widehat{BAE}=\frac{BE}{AB}=\frac{BE}{c}\) ; \(\sin\widehat{FAC}=\frac{CF}{AC}=\frac{CF}{b}\)

Mà \(\sin\frac{\widehat{A}}{2}=\sin\widehat{BAE}=\sin\widehat{FAC}=\frac{BE}{c}=\frac{CF}{b}=\frac{BE+CF}{b+c}\)

Ta thấy \(\hept{\begin{cases}BE\le BD\\CF\le CD\end{cases}}\Rightarrow BE+CF\le BD+CD=BC\)

Lại có theo bất đẳng thức Cauchy: \(b+c\ge2\sqrt{bc}\)

\(\Rightarrow\sin\frac{\widehat{A}}{2}=\frac{BE+CF}{b+c}\le\frac{BC}{2\sqrt{bc}}=\frac{a}{2\sqrt{bc}}\)

Dấu "=" xảy ra khi tam giác ABC cân tại A