K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4

a) \(\left(x^2-9\right)\left(x^2+7x+14\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left[\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\) (vì \(\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}>0\forall x\))

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

b) \(x^4-2=0\)

\(\Leftrightarrow\left(x^2-\sqrt{2}\right)\left(x^2+\sqrt{2}\right)=0\)

\(\Leftrightarrow x^2-\sqrt{2}=0\) (vì \(x^2+\sqrt{2}>0\forall x\))

\(\Leftrightarrow\left(x-\sqrt{\sqrt{2}}\right)\left(x+\sqrt{\sqrt{2}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{2}}\\x=-\sqrt{\sqrt{2}}\end{matrix}\right.\)

a)

\(\Leftrightarrow\left(x^2-9\right)\left(x^2+2\cdot\dfrac{7}{2}x+\dfrac{49}{4}+\dfrac{7}{4}\right)=0\)

\(\Leftrightarrow\left(x^2-9\right)\left[\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}\right]=0\)

Vì \(\left(x+\dfrac{7}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}>0\)

\(\Rightarrow x^2-9=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

b)

\(\Leftrightarrow\left(x^2-\sqrt{2}\right)\left(x^2+\sqrt{2}\right)=0\)

Vì \(x^2\ge0\Rightarrow x^2+\sqrt{2}>0\)

\(\Rightarrow x^2-\sqrt{2}=0\)

\(\Leftrightarrow x^2=\sqrt{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt[4]{2}\\x=-\sqrt[4]{2}\end{matrix}\right.\)

 

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta có \(a = 2 > 0\) và \(\Delta  = {\left( { - 5} \right)^2} - 4.2.3 = 1 > 0\)

=> \(2{x^2} - 5x + 3 = 0\) có 2 nghiệm phân biệt \({x_1} = 1,{x_2} = \frac{3}{2}\).

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} - 5x + 3\) mang dấu “+” là \(\left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \(2{x^2} - 5x + 3 > 0\) là \(\left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)

b) Ta có \(a =  - 1 < 0\) và \(\Delta ' = {\left( { - 1} \right)^2} - \left( { - 1} \right).8 = 9 > 0\)

=> \( - {x^2} - 2x + 8 = 0\)có 2 nghiệm phân biệt \({x_1} =  - 4,{x_2} = 2\).

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - {x^2} - 2x + 8\) mang dấu “-” là \(\left( { - \infty ; - 4} \right] \cup \left[ {2; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \( - {x^2} - 2x + 8 \le 0\) là \(\left( { - \infty ; - 4} \right] \cup \left[ {2; + \infty } \right)\)

c)

Ta có \(a = 4 > 0\) và \(\Delta ' = {\left( { - 6} \right)^2} - 4.9 = 0\)

=> \(4{x^2} - 12x + 9 = 0\) có nghiệm duy nhất \(x = \frac{3}{2}\).

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(4{x^2} - 12x + 9\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(4{x^2} - 12x + 9 < 0\) là \(\emptyset \)

d) \( - 3{x^2} + 7x - 4 \ge 0\)

Ta có \(a =  - 3 < 0\) và \(\Delta  = {7^2} - 4.\left( { - 3} \right).\left( { - 4} \right) = 1 > 0\)

=> \( - 3{x^2} + 7x - 4 = 0\) có 2 nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{4}{3}\).

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 7x - 4\) mang dấu “+” là \(\left[ {1;\frac{4}{3}} \right]\)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 7x - 4 \ge 0\) là \(\left[ {1;\frac{4}{3}} \right]\)

a: (3x-2)(4x+5)=0

=>3x-2=0 hoặc 4x+5=0

=>x=2/3 hoặc x=-5/4

b: (2,3x-6,9)(0,1x+2)=0

=>2,3x-6,9=0 hoặc 0,1x+2=0

=>x=3 hoặc x=-20

c: =>(x-3)(2x+5)=0

=>x-3=0 hoặc 2x+5=0

=>x=3 hoặc x=-5/2

a: (2x-10)(5x+25)=0

=>2x-10=0 hoặc 5x+25=0

=>x=5 hoặc x=-5

b: (x+15)(x-2)=0

=>x+15=0 hoặc x-2=0

=>x=-15 hoặc x=2

c: =>x(x-7)=0

=>x=0 hoặc x=7

3 tháng 3 2022

a, (2x - 10) (5x + 25) = 0

⇒ 2x - 10 = 0 hoặc 5x + 25 = 0

⇒ x = 5 hoặc x = -5

b, (x + 15) (x - 2) = 0

⇒ x + 15 = 0 hoặc x - 2 = 0

⇒ x = -15 hoặc x = 2

c: =>x(x-7)=0

=>x=0 hoặc x=7

3 tháng 4 2020

a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )  

<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0

<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0

<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0

<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)

Vậy x = { \(\frac{-1}{3};-5\)

b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0 

<=> ( x + 5 )2 -4.x . (x + 5 ) = 0

<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0

<=> ( x + 5 ) . ( 5 - 3.x )  = 0

<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{3};-5\right\}\)

c) (4.x - 5 )- 2. ( 16.x2 -25 ) = 0 

<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0

<=> (  4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0

<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0

<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0

<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)

d) ( 4.x + 3 )2 = 4. ( x- 2.x + 1 ) 

<=> 16.x+ 24.x + 9 - 4.x + 8.x - 4 = 0

<=> 12.x2 + 32.x + 5 =0 

<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0 

<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)

Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)

e) x2 -11.x + 28 = 0

<=> x2 -4.x  - 7.x + 28 = 0

<=> ( x - 7 ) . ( x - 4 ) = 0

<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)

Vậy x = { 4 ; 7 } 

f ) 3.x.3 - 3.x2 - 6.x = 0

<=> 3.x. ( x2 -x - 2 ) = 0 

<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)

        \([x=0\)                \([x=0\)

( Lưu ý :Lưu ý này không cần ghi vào vở :  Chị nối 2 ý đó làm 1 nha cj ! ) 

Vậy x = { 2 ; -1 ; 0 } 

16 tháng 3 2018

a) 8( 3x - 2 ) - 14x = 2( 4 – 7x ) + 15x

⇔ 24x – 16 -14x = 8 – 14x + 15x

⇔ 10x -16 = 8 + x

⇔ 9x = 24

⇔ x = 24/9

b) ( 3x – 1 )( x – 3 ) – 9 + x2 = 0

⇔ (3x -1)( x – 3) + (x - 3)( x + 3) = 0

⇔ (x - 3)(3x - 1 + x - 3) = 0

⇔ (x - 3)(4x - 4) = 0

c) |x - 2| = 2x - 3

TH1: x - 2 ≥ 0 ⇔ x ≥ 2

Khi đó: x - 2 = 2x – 3

⇔ 2x – x = -2 + 3

⇔ x = 1 (không TM điều kiện x ≥ 2)

TH2: x – 2 < 0 ⇔ x < 2

Khi đó: x-2 = -(2x – 3)

⇔ x – 2 = -2x + 3

⇔ 3x = 5

⇔ x = 5/3 ( TM điều kiện x < 2)

MTC: x(x-2)

ĐKXĐ: x ≠ 0;x ≠ 2

Đối chiếu với ĐKXĐ thì pt có nghiệm x = - 1

11 tháng 2 2018

a, (3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy...

27 tháng 5 2018

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe...
Đọc tiếp

Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Sau đó quay về từ B về A với vận tốc 12 km/h. Cả đi lẫn về hết 4 giờ 30 phút. Tính quãng đường 4B Bài 4: Cho tam giác ABC vuông tại A với AB = 3cm AC= 4cm vẽ đường cao AE. a) Chứng minh rằng AABC đồng dạng với AEBA. b) Tia phân giác của góc ABC cắt AC tại F. Tính BF Bài 5: Cho tam giác ABC có AC = 8cm, AC = 16cm Gọi D và E là hai điểm lần lượt trên cạnh AB và AC sao cho BD = 2cm CE = 13cm Chứng minh rằng a. AAEB AADC b. AED= ABC, cho DE = 5cm Tính BC? C. AE AC AD AB

1

1:

a: =>3x=6

=>x=2

b: =>4x=16

=>x=4

c: =>4x-6=9-x

=>5x=15

=>x=3

d: =>7x-12=x+6

=>6x=18

=>x=3

2:

a: =>2x<=-8

=>x<=-4

b: =>x+5<0

=>x<-5

c: =>2x>8

=>x>4

a: =>(x-1)(3x-4)>0

=>x>4/3 hoặc x<1

b: =>x^3-3x^2-10x^2+30x+12x-36>0

=>(x-3)(x^2-10x+12)>0

Th1: x-3>0và x^2-10x+12>0

=>x>5+căn 13

TH2: x-3<0 và x^2-10x+12<0

=>x<3 và 5-căn 13<x<5+căn 13

=>3<x<5+căn 13