a) tìm n để n mux2 +2006 là 1 số chính phương.
b) cho n là SNT >3. Hỏi n mux2 +2006 là SNT hay HS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do n nghuyên tố > 3 => n không chia hết cho 3 => n2 không chia hết cho 3
=> n2 chia 3 dư 1; 2006 chia 3 dư 2
=> n2 + 2006 chia hết cho 3
Mà 1 < 3 < n2 + 2006
=> n2 + 2006 là hợp số
n là SNT lớn hơn 3
=> n ko chia hết cho 3
=>n2 chia 3 dư 1
=>n2=3k+1
=>n2+2006=3k+1+2006=3k+2007 chia hết cho 3 (vì 3k và 2007đeều chia hết cho 3)
=>n2+2006 là hợp số
a ) Đặt \(n^2+2006=a^2\left(a\in Z\right)\)
\(\Rightarrow2006=a^2-n^2=\left(a-n\right).\left(a+n\right)\)( 1 )
Mà ( a + n ) - ( a - n ) = 2n chia hết cho 2
=> a + n và a - n có cùng tính chẵn lẻ
TH1 : a + n và a - n cùng lẻ => ( a - n ) . ( a + n ) là số lẻ => trái với ( 1 )
TH2 : a + n và a -n cùng chẵn => ( a - n ) . ( a + n ) chia hết cho 4 => trái với 1
Vậy ko có n thỏa man để \(n^2+2006\)là số chính phương
b ) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n = 3k + 1 hoặc n = 3k + 2 ( \(k\ne0\))
TH1 : n = 3k + 1 thì \(n^2+2006\)= \(\left(3k+1\right)^2\)+ 2006 \(=(9k^2+6k+2007)⋮3\)và lớn hơn 3
=> \(n^2+2006\)là hợp số
TH2 : n = 3k + 2 thì \(n^2+2006=\left(3k+2\right)^2=(9k^2+12k+2010)⋮3\)và lớn hơn 3
=> \(n^2+2006\)là hợp số
Vậy \(n^2+2006\)là hợp số
n là số nguyên tố lớn hơn 3 => n=3k+1 hoặc n=3k+2 (k la so tu nhien)
Nếu n=3k+1 => n^2+2006=(3k+1)^2+2006=9k^2+6k+1+2006=9k^2+6k+2007 =3(3k^2+2k+669) chia hết cho 3 và >3 nên là hop so
Nếu n=3k+2 =>n^2+2006=(3k+2)^2+2006=9k^2+12k+2010 chia hết cho 3 và > 3 nen là hop so
bài 2
n^2+2006=a^2 => 2006=a^2-n^2=(a-n)(a+n)
ta co n-a-(n+a)=-2a là số chẵn nên a-n và a+n cùng tính chẵn lẻ
ta thấy 2006 là số chẵn nên a-n và a+n cùng chẵn nên (a+n)(a+n) chia hết cho 4 mà 2006 ko chia hé t cho 4 nên ko có x
Đặt 2n + 2006 = a2 (a thuộc Z)
=> 2006 = a2 - n2 = (a - n)(a + n) (1)
Mà (a + n) - (a - n) = 2n chia hết cho 2
=> => a + n và a - n có cùng tính chẵn lẻ
+) TH1 : a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)
+) TH2 : a + n và a - n cùng chẵn => a(a - n)(a + n) chia hết cho 4, trái với (1)
Vậy không có n thỏa mãn n2 + 2006 là số chính phương
b) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n = 3k + 1 hoặc n = 3k + 2 (k thuộc N*)
+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số (1)
+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 201 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số (2)
Từ (1) và (2) thỏa mãn 2 điều kiện
=> n2 + 2006 là hợp số
b: TH1: n=3k+1
\(n^2+2006=\left(3k+1\right)^2+2006\)
\(=9k^2+6k+1+2006\)
\(=9k^2+6k+2007=3\left(3k^2+2k+669\right)⋮3\)(1)
TH2: n=3k+2
\(n^2+2006=\left(3k+2\right)^2+2006\)
\(=9k^2+12k+2010=3\left(3k^2+4k+670\right)⋮3\left(2\right)\)
Từ (1),(2) suy ra \(n^2+2006\) là hợp số