tìm x
[(6x-12):2-18]x 3=18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\text{Với }x< -2\Rightarrow3-x-x-2=4\\ \Rightarrow-2x=3\Rightarrow x=-\dfrac{3}{2}\left(ktm\right)\\ \text{Với }-2\le x< 3\Rightarrow3-x+x+2=4\\ \Rightarrow0x=-1\Rightarrow x\in\varnothing\\ \text{Với }x\ge3\Rightarrow x-3+x+2=4\\ \Rightarrow2x=5\Rightarrow x=\dfrac{5}{2}\left(ktm\right)\)
Vậy \(x\in\varnothing\)
\(b,\text{Với }x< 2\Rightarrow4-2x+18-6x=21\\ \Rightarrow22-8x=21\Rightarrow x=\dfrac{1}{8}\left(tm\right)\\ \text{Với }2\le x< 3\Rightarrow2x-4+18-6x=21\\ \Rightarrow-4x+14=21\Rightarrow x=-\dfrac{7}{4}\left(ktm\right)\\ \text{Với }x\ge3\Rightarrow2x-4+6x-18=21\\ \Rightarrow8x=43\Rightarrow x=\dfrac{43}{8}\left(tm\right)\)
Vậy \(x\in\left\{\dfrac{1}{8};\dfrac{43}{8}\right\}\)
9(x + 1)² - 16(y + 3)²
= 9(x² + 2x + 1) - 16(y² + 6y + 9)
= 9x² + 18x + 9 - 16y² - 96y - 144
= 9x² - 16y² + 18x - 96y - 135
\(C=\frac{\left(x+3\right)^2-2x^2+6+x\left(x-3\right)}{x^2-9}.\frac{2x^2-18}{6x-12}\)\(\)
\(C=\frac{x^2+6x+9-2x^2+6+x^2-3x}{x^2-9}.\frac{2\left(x^2-9\right)}{6x-12}\)\(C=\frac{3x+15}{6x-12}.2=\frac{x+5}{x-2}=1+\frac{7}{x-2}\)
Để C nguyên =>(x-2) thuộc Ư(7) \(\Rightarrow x\in\left\{3;1;9;-5\right\}\)
a) X - 36 x 18 = 12
X - 36 = 12 : 18
X - 36 = 2/3
X = 2/3 + 36
X = \(36\frac{2}{3}\)
b) ( X - 36 ) : 18 = 12
X - 36 = 12 x 18
X - 38 = 216
X = 216 + 38
X = 254
1.8100
2. 34 x 18 + 18 x 66
= 18 x ( 34 + 66)
= 18 x 100 = 1800
3. X × ( 8 + 12) = 160 + 20 × 12
= X x 20 = 160 + 240
= X x 20 = 400
X = 400 : 20 = 20
4. X x 12 - X x 2 = 2020
(12 - 2) x X = 2020
10 x X = 2020
X = 2020 : 10 = 202
[ 25 + ( 6x - 18 ) : 3 ] . 2 = 78
[ 25 + ( 6x - 18 ) : 3 ] = 78 : 2
[ 25 + ( 6x - 18 ) : 3 ] = 39
( 6x - 18 ) : 3 = 39 - 25
( 6x - 18 ) : 3 = 14
6x - 18 = 14 . 3
6x - 18 = 42
6x = 42 + 18
6x = 60
x = 60 : 6
Vậy:x = 10
Hok tốt !!!
c) \(\sqrt{\left(x-2\right)^2}=10\)
\(x-2=10\)
\(x=12\)
d) \(\sqrt{9x^2-6x+1}=15\)
\(\sqrt{\left(3x\right)^2-2.3x.1+1^2}=15\)
\(\sqrt{\left(3x-1\right)^2}=15\)
\(3x-1=15\)
\(3x=16\)
\(x=\dfrac{16}{3}\)
a) \(đk:x\ge0\)
\(pt\Leftrightarrow3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)
\(\Leftrightarrow4\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=3\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\)
b) \(đk:x\ge-2\)
\(pt\Leftrightarrow3\sqrt{x+2}+12\sqrt{x+2}-2\sqrt{x+2}=26\)
\(\Leftrightarrow13\sqrt{x+2}=26\)
\(\Leftrightarrow\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(tm\right)\)
c) \(pt\Leftrightarrow\left|x-2\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=10\\x-2=-10\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-8\end{matrix}\right.\)
d) \(pt\Leftrightarrow\sqrt{\left(3x-1\right)^2}=15\)
\(\Leftrightarrow\left|3x-1\right|=15\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=15\\3x-1=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{3}\\x=-\dfrac{14}{3}\end{matrix}\right.\)
e) \(đk:x\ge\dfrac{8}{3}\)
\(pt\Leftrightarrow3x+4=9x^2-48x+64\)
\(\Leftrightarrow9x^2-51x+60=0\)
\(\Leftrightarrow3\left(x-4\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
[(6x-12):2-18]x3=18
(6x-12):2-18 =18:3=6
(6x-12):2 =6+18=24
6x-12 =24x2=48
6x =48+12=60
Vậy x = 0
(6x-12):2-18=18 : 3
(6x-12):2-18= 6
(6x-12):2=6 +18
(6x-12):2=24
6x-12=24 . 2
6x-12=48
6x=48+12
6x = 60
x = 60 :6
x = 10