giúp mình vs cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, khi K mở \(=>\left(R1ntR2\right)\)\(nt\left(R4//R5\right)\)
A2 chỉ 0,5 A\(=>I4=I\left(A2\right)=0,5A=>U4=U5=I4.R4=0,5.80\)\(=40V\)
\(=>I5=\dfrac{U5}{R5}=\dfrac{40}{20}=2A=>I45=I4+I5=2+0,5=2,5A\)\(=Im=I12\)=>số chỉ ampe kế(A1)=2,5A
\(=>R12=R1+R2=4+4=8\left(Om\right)\)
\(=>U12=I12.R12=8.2,5=20V\)\(=>UAB=U12+U4=60V\)
b,khi đóng K\(=>R1nt\left\{[R2nt\left(R4//R5\right)]//R3\right\}\)
\(=>R245=R2+\dfrac{R4.R5}{R4+R5}=4+\dfrac{80.20}{80+20}=20\left(om\right)\)
\(=>R2345=\dfrac{R3.R245}{R3+R345}=\dfrac{5.20}{5+20}=4\left(om\right)\)
\(=>Rtd=R1+R2345=4+4=8\left(om\right)\)
\(=>Im=\dfrac{UAB}{Rtd}=\dfrac{60}{8}=7,5A=I1=I2345\)
\(=>A1\) chỉ 7,5 A
\(=>U2345=I2345.R2345=7,5.4=30V\)\(=U245=U3\)
\(=>I245=\dfrac{U245}{R245}=\dfrac{30}{20}=1,5A=I45\)
\(=>U45=I45.R45=16.1,5=24V=U4\)
\(=>I4=\dfrac{U4}{R4}=\dfrac{24}{80}=0,3A\)\(=>A2\) chỉ 0,3A
1.Câu thơ trích trong bài thơ Nhớ Rừng.Tác giả Thế Lữ,các PTBĐ là biểu cảm(gián tiếp)
2.Thể thơ 8 tiếng
a) \(\dfrac{-15}{-2023}=\dfrac{15}{2023}>0\)
\(\dfrac{3}{-4}< 0\)
\(\Rightarrow\dfrac{-15}{-2023}>\dfrac{3}{-4}\)
b) \(\dfrac{2014}{-2015}< 0\)
\(\dfrac{-5}{-7}=\dfrac{5}{7}>0\)
\(\Rightarrow\dfrac{2014}{-2015}< \dfrac{-5}{-7}\)
c) \(\dfrac{-4162}{3976}< 0\)
\(\dfrac{1}{2}>0\)
\(\Rightarrow\dfrac{-4162}{3976}< \dfrac{1}{2}\)
d) \(\dfrac{-2401}{7693}< 0\)
\(\dfrac{-4}{-7}=\dfrac{4}{7}>0\)
\(\Rightarrow\dfrac{-2401}{7693}< \dfrac{4}{7}\)
a: \(\dfrac{-15}{-2023}=\dfrac{15}{2023}>0\)
\(\dfrac{3}{-4}< 0\)
Do đó: \(\dfrac{-15}{-2023}>\dfrac{3}{-4}\)
b: \(\dfrac{2014}{-2015}< 0\)
\(\dfrac{-5}{-7}=\dfrac{5}{7}>0\)
Do đó: \(\dfrac{2014}{-2015}< \dfrac{-5}{-7}\)
c: \(-\dfrac{4162}{3976}< 0\)
\(0< \dfrac{1}{2}\)
Do đó: \(-\dfrac{4162}{3976}< \dfrac{1}{2}\)
d: \(\dfrac{-2401}{7693}< 0\)
\(0< \dfrac{4}{7}=\dfrac{-4}{-7}\)
Do đó: \(-\dfrac{2401}{7693}< \dfrac{-4}{-7}\)
e: -17<-4
=>\(\dfrac{-17}{2019}< \dfrac{-4}{2019}\)
=>\(\dfrac{17}{-2019}< \dfrac{-4}{2019}\)
g: \(\dfrac{-15}{-43}=\dfrac{15}{43}\)
mà 15>7
nên \(\dfrac{-15}{-43}=\dfrac{15}{43}>\dfrac{7}{43}\)
h: \(\dfrac{-15}{60}=\dfrac{-15\cdot3}{60\cdot3}=\dfrac{-45}{180}\)
\(\dfrac{-20}{45}=\dfrac{-20\cdot4}{45\cdot4}=\dfrac{-80}{180}\)
Ta có: -45>-80
=>\(-\dfrac{45}{180}>-\dfrac{80}{180}\)
=>\(-\dfrac{15}{60}>-\dfrac{20}{45}\)
k: \(\dfrac{11}{45}>0\)
\(0>-\dfrac{14}{30}\)
Do đó: \(\dfrac{11}{45}>-\dfrac{14}{30}\)
m: \(-\dfrac{17}{15}< -\dfrac{15}{15}=-1\)
\(-1< -\dfrac{5}{18}=\dfrac{5}{-18}\)
Do đó: \(\dfrac{-17}{15}< \dfrac{5}{-18}\)
n: \(-\dfrac{14}{42}< 0\)
\(0< \dfrac{-56}{-28}\)
Do đó: \(\dfrac{-14}{42}< \dfrac{-56}{-28}\)
a) Ta có: \(Q=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
\(=\dfrac{3x+3\sqrt{x}-3-\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) Thay \(x=4+2\sqrt{3}\) vào Q, ta được:
\(Q=\dfrac{\sqrt{3}+1+1}{\sqrt{3}+1-1}=\dfrac{2+\sqrt{3}}{\sqrt{3}}=\dfrac{2\sqrt{3}+3}{3}\)
c) Để Q=3 thì \(\sqrt{x}+1=3\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\sqrt{x}=-3-1\)
\(\Leftrightarrow2\sqrt{x}=4\)
hay x=4
d) Để \(Q>\dfrac{1}{2}\) thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{x}+2-\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}>0\)
\(\Leftrightarrow\sqrt{x}-1>0\)
\(\Leftrightarrow x>1\)
Kết hợp ĐKXĐ, ta được: x>1
e) Để Q nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)
\(\Leftrightarrow2⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;2;3\right\}\)
hay \(x\in\left\{0;4;9\right\}\)
Cơ chế hình thành cây có kiểu gen Aaa là do rồi loạn giảm phân, diễn ra ở kì sau của giảm phân 1.
Sơ đồ lai:
P: Aa x Aa
GP: Aa ; 0 ; A ; a
F1: Aaa ; a
Có: \(A\left(x\right)=x^4+2x^2-x\) và \(B\left(x\right)=-x^4-\dfrac{1}{2}x^2+2x-8\)
+, \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=\left(x^4+2x^2-x\right)+\left(-x^4-\dfrac{1}{2}x^2+2x-8\right)\)
\(=x^4+2x^2-x-x^4-\dfrac{1}{2}x^2+2x-8\)
\(=\dfrac{3}{2}x^2+x-8\)
+, \(D\left(x\right)=B\left(x\right)-A\left(x\right)\)
\(=\left(-x^4-\dfrac{1}{2}x^2+2x-8\right)-\left(x^4+2x^2-x\right)\)
\(=-x^4-\dfrac{1}{2}x^2+2x-8-x^4-2x^2+x\)
\(=-2x^4-\dfrac{5}{2}x^2+3x-8\)
b) Ta có: \(C\left(x\right)=\dfrac{3}{2}x^2+x-8\)
\(\Rightarrow C\left(2\right)=\dfrac{3}{2}\cdot2^2+2-8=0\)
\(\Rightarrow x=2\) là 1 nghiệm của \(C\left(x\right)\)
c) Có: \(E\left(x\right)+D\left(x\right)=2x^4\)
\(\Rightarrow E\left(x\right)=2x^4-D\left(x\right)\)
\(=2x^4-\left(-2x^4-\dfrac{5}{2}x^2+3x-8\right)\)
\(=2x^4+2x^4+\dfrac{5}{2}x^2-3x+8\)
\(=4x^4+\dfrac{5}{2}x^2-3x+8\)