Viết các số sau thành lũy thừa có cùng số mũ
8; 64; 27; 512; 1024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(125=5^3\)
\(25^2=\left(5^2\right)^2=5^{2.2}=5^4\)
\(\left(5^3\right)^2=5^{3.2}=5^6\)
\(125^5=\left(5^3\right)^5=5^{3.5}=5^{15}\)
\(625^4=\left(5^4\right)^4=5^{4.4}=5^{16}\)
\(125.5^2=5^3.5^2=5^{3+2}=5^5\)
125 = 53
252 = (52)2 = 54
(53)2 = 56
1255 = ( 53)5 = 515
6254 = (54)4 = 516
125 . 52 = 53 . 52 = 55
\(a^m\cdot a^n=a^{m+n}\left(m,n\in N\right)\\ a^m:a^n=a^{m-n}\left(m>n;m,n\in N\right)\)
Các công thức lần lượt là:
♦ \(a^m.a^n=a^{m+n}\)
♦ \(a^m:a^n=a^{m-n}\)
♦ \(\left(a^m\right)^n=a^{m.n}\)
♦ \(\left(m.n\right)^a=m^a.n^a\)
♦ \(\left(\dfrac{m}{n}\right)^a=\dfrac{m^a}{n^a}\)
Lần lượt :
a) am.an = am+n
b) am : an = am-n (m≥n , a≠0)
c) (an)m = am.n
d) (a.b)m = am.bm
e- (\(\dfrac{a}{b}\))m = \(\dfrac{^{a^m}}{b^m}\)
\(x^m:x^n=x^{m-n}\)
\(x^m.x^n=x^{m+n}\)
\(\left(x^m\right)^n=x^{m.n}\)
Công thức 1 : \(a^m:a^n=a^{m-n}\)với \(m\ge n\)
Công thức 2 : \(a^n\cdot b^n=\left(a\cdot b\right)^n\)
Công thức 3 : \(\frac{a^n}{b^n}=\left(\frac{a}{b}\right)^n\)
Công thức 4 : \(\left(a^m\right)^n=a^{m\cdot n}\)
2³ ; 4³ ; 3³ ; 8³
P/s : Ý cuối thì mình chịu.
Đáp án là :\(8^1;64^1;27^1;512^1;1024^1\)
Vì nếu chuyển thành \(2^3;4^3;3^3;8^3\)thì \(1024\)không thể nào chuyển thành 1 số tự nhiên có số mũ là 3 được