K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4

Đáp án: D.3
Giải thích:

Để tìm cực trị của hàm hợp \( g(x) = f(x^2 - 2x - 1) \), ta cần thực hiện các bước sau:

1. Tìm điểm cực trị của hàm số \( f(x^2 - 2x - 1) \).
2. Phân tích số điểm cực trị của \( f(x^2 - 2x - 1) \) dựa trên đồ thị của \( f'(x) \).

Trước hết, để tìm điểm cực trị của hàm số \( f(x^2 - 2x - 1) \), ta cần tìm đạo hàm của \( g(x) \), sau đó giải phương trình \( g'(x) = 0 \) để tìm các điểm mà đạo hàm bằng 0.

Đạo hàm của \( g(x) = f(x^2 - 2x - 1) \):
\[ g'(x) = f'(x^2 - 2x - 1) \cdot (2x - 2) \]

Bây giờ, ta cần giải phương trình \( g'(x) = 0 \) để tìm điểm mà \( g(x) \) có đạo hàm bằng 0:
\[ f'(x^2 - 2x - 1) \cdot (2x - 2) = 0 \]

Điều này có nghĩa là hoặc \( f'(x^2 - 2x - 1) = 0 \) hoặc \( 2x - 2 = 0 \).

\( 2x - 2 = 0 \) khi \( x = 1 \).

Sau khi tìm \( x \), ta cần kiểm tra xem các giá trị của \( x \) khi đặt vào \( f'(x^2 - 2x - 1) \) tạo ra bao nhiêu điểm cực trị trên đồ thị của \( f'(x) \). Số lượng điểm cực trị của hàm số \( f(x) \) khi nhân với hệ số 2x-2 là số lượng điểm cực trị của hàm số \( f(x) \) bị tịnh tiến sang phải 1 đơn vị. Điều này có nghĩa là số điểm cực trị của \( g(x) \) sẽ giống với số điểm cực trị của \( f(x) \).

Vậy, đáp án là \(\mathbf{D. 3}\).

P/s: Lỗi font hơi nhiều

NV
3 tháng 4

Từ đồ thị \(\Rightarrow\) hàm \(f\left(x\right)\) có 1 cực trị tại \(x=2\)

\(g'\left(x\right)=\left(2x-2\right).f'\left(x^2-2x-1\right)\)

\(g'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}2x-2=0\\f'\left(x^2-2x-1\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2-2x-1=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=3\end{matrix}\right.\)

Vậy hàm \(g\left(x\right)\) có 3 cực trị

7 tháng 4 2019

16 tháng 7 2018

Đáp án A

Dựa vào bảng biến thiên ta thấy rằng .

đổi dấu khi qua hai điểm không đổi dấu khi qua điểm x=1 nên hàm số y= f(x) có hai diểm cực trị.

29 tháng 7 2018

Dựa vào bảng biến thiên ta thấy rằng f’(-2)=f’(1)=f’(3)=0.

f’(x)đổi dấu khi qua hai điểm x=-2; x=3f’(x) không đổi dấu khi qua điểm x=1 nên hàm số y=f(x) có hai diểm cực trị.

Đáp án A

5 tháng 1 2019

30 tháng 11 2017

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

19 tháng 5 2019

31 tháng 12 2017

1 tháng 4 2018

23 tháng 10 2017

Ta có: f' (x - 2) = f' (x).(x-2)' = f'(x) 

Do đó; đồ thị hàm số y= f’ (x) có hình dạng tương tự như trên.

Đồ thị hàm số y= f( x-2)  có 3 điểm cực trị khi và chỉ khi đồ thị hàm số y= f( x) cũng có 3 điểm cực trị.

Chọn D.

14 tháng 7 2018

Đáp án D

Phương pháp : Nhận xét : f’(x – 2) = f’(x)

Cách giải : Ta có : f’(x – 2) = (x – 2)’. f’(x) = f’(x) Đồ thị hàm số y = f’(x) có hình dạng tương tự như trên.

Đồ thị hàm số y = f(x – 2)có 3 điểm cực trị => Đồ thị hàm số y = f(x) cũng có 3 điểm cực trị