Cho tam giác ABC, đường cao BD và CE cắt nhau tại H.
a) Cmr AE. AB = AD. AC
b) Cm ^ADE = ^ABC
c) Gỉa sử ^A có số đo bằng 60 độ và diện tích tam giác ABC bằng 120cm^2. Tính diện tích tam giác ADE.
(Mình đang cần gấp mong các bạn giúp mình.)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạngvới ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB và AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng vói ΔABC
=>góc ADE=góc ABC
d: ΔADE đồng dạng với ΔABC
=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ADE}=30\left(cm^2\right)\)
a. -△AEC và △ADB có: \(\widehat{AEC}=\widehat{ADB}=90^0;\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△AEC∼△ADB (g-g).
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Rightarrow AE.AB=AD.AC\).
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AD}{AB}\)
b. -△ADE và △ABC có: \(\dfrac{AE}{AC}=\dfrac{AD}{AB};\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△ADE∼△ABC (g-g).
c. -△AEC vuông tại E có: \(\widehat{EAC}=60^0\Rightarrow AE=\dfrac{AC}{2}\)
-△ADE∼△ABC \(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AE}{AC}\right)^2=\dfrac{1}{4}\)
\(\Rightarrow S_{ADE}=\dfrac{1}{4}S_{ABC}=\dfrac{1}{4}.120=30\left(cm^2\right)\)
C/m \(AE=\dfrac{AC}{2}\):
-Lấy M là trung điểm BC.
-△AEC vuông tại E có: EM là trung tuyến.
\(\Rightarrow AM=EM=\dfrac{1}{2}AC\)
\(\Rightarrow\)△AEM cân tại M mà \(\widehat{EAM}=60^0\).
\(\Rightarrow\)△AEM đều \(\Rightarrow AE=AM=\dfrac{AC}{2}\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E co
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng với ΔABC
a) Xét tam giác ADB vuông tại D
tam giác AEC vuông tại E
có A góc chung
=>tam giác ADB đồng dạng tam giác AEC (g-g)
Ai trả lời giúp mk đi , cả lời giải và phép tính mai mk fai nộp rồi
a: AD=DB
=>S ADE=S BDE
b: S ABE=2/3*36=24cm2
=>S ADE=12cm2
a) Xét hai tam giác vuông: \(\Delta ABD\) và \(\Delta ACE\) có:
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABD\) ∽ \(\Delta ACE\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AD}{AE}\)
\(\Rightarrow AE.AB=AD.AC\)
b) Do \(\dfrac{AB}{AC}=\dfrac{AD}{AE}\left(cmt\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(cmt\right)\)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ADE\) ∽ \(\Delta ABC\left(g-g\right)\)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\)