K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2024

Đặt A = 1/4 + 1/(4.7) + 1/(7.10) + ... + 1/(94.97) + 1/(97.100)

= 1/3 . (1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/94 - 1/97 + 1/97 - 1/100)

= 1/3 . (1 - 1/100)

= 1/3 - 1/300 < 1/3

Vậy A < 1/3

2 tháng 10 2023

`#3107.101107`

1.

a)

`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`

`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`

`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`

`= 1/3* (1 - 1/103)`

`= 1/3*102/103`

`= 34/103`

b)

`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`

`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`

`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`

`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`

`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`

`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`

`= -1/2 * (1 - 1/101)`

`= -1/2*100/101`

`= -50/101`

2.

`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`

`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`

`= 1-1/100`

`= 99/100`

3 tháng 5 2020

\(S_1=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{48\cdot49}+\frac{1}{49\cdot50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

\(S_2=\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+....+\frac{1}{94\cdot97}+\frac{1}{97\cdot100}\)

\(3S_2=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+....+\frac{3}{94\cdot97}+\frac{3}{97\cdot100}\)

\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{97}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}\)

=> \(S_2=\frac{6}{25}:3=\frac{2}{25}\)

5 tháng 8 2015

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

6 tháng 3 2018

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

26 tháng 4 2018

\(\frac{3}{1.4}+\frac{3}{4.7}+.....+\frac{3}{94.97}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

\(=\frac{96}{97}\)

mà \(\frac{96}{97}< 1\)

\(\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.07}< 1\)

vậy..................

\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{91\cdot94}+\frac{3}{94\cdot97}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

\(=\frac{96}{97}\)

\(\Rightarrow\frac{96}{97}< 1\)

\(\Rightarrow\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{94\cdot97}< 1\)

Vậy \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{94\cdot97}< 1\)

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\right).\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{97}\right)\)

\(=\frac{1}{3}.\frac{96}{97}\)

\(=\frac{32}{97}\)

học tốt 

23 tháng 8 2019

3A = 3(1/1.4 + 1/4.7 + 1/7.10 + ...... + 1/94.97)

3A=1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - ........ - 1/97

3A = 1-1/97

3A = 96/97

A = 32/97

Oke nha bạn

3 tháng 5 2019

Ta có: \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\)

\(\Leftrightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}\)

\(\Leftrightarrow1-\frac{1}{97}=\frac{96}{97}\)

Do \(\frac{96}{97}< 1\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.97}< 1\)

Vậy:.............................<1

26 tháng 12 2015

\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{97\cdot100}=\frac{0,33\cdot x}{2009}\cdot3\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}=\frac{0,99\cdot x}{2009}\)

\(\frac{100}{100}-\frac{1}{100}=\frac{0,99x}{2009}\)

\(\frac{99}{100}=\frac{0,99x}{2009}\)

=>0,99x*100=2009*99

99x=2009*99

=>x=2009

Vậy x=2009

26 tháng 12 2015

\(0,33\cdot\frac{x}{2009}\) hay \(\frac{0,33\cdot x}{2009}\)

11 tháng 7 2017

\(=>\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.....+\dfrac{1}{97}-\dfrac{1}{100}\right)=\dfrac{1}{3}x\)

Rút gọn các số đi ta được :

\(=>\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{100}\right)=\dfrac{1}{3}x\)

\(=>\dfrac{1}{4}-\dfrac{1}{100}=x\)

\(=>x=\dfrac{6}{25}\)

CHÚC BẠN HỌC TỐT.....

11 tháng 7 2017

\(\dfrac{1}{4.7}+\dfrac{1}{7.10}+.....+\dfrac{1}{97.100}=\dfrac{1}{3}x\)

\(\Rightarrow\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.....+\dfrac{1}{97}-\dfrac{1}{100}\right)=\dfrac{1}{3}x\)

\(\Rightarrow\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.....+\dfrac{1}{97}-\dfrac{1}{100}=x\)

\(\Rightarrow\dfrac{1}{4}-\dfrac{1}{100}=x\)

\(\Rightarrow x=\dfrac{6}{25}\)