K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

Gọi số trận đấu mà anh Nam chơi ngày thứ nhất, thứ 2, ..., ngày thứ 20 lần lược là: a1; a2; ...; a n.

Xét 20 tổng :

S1 = a1

S2 = a1 + a2

...................

S n = a1 + a2 + ... + a​ n

Ta có: S1 < S2 < .... < S n < 36 (vì trong 20 ngày anh Nam không chơi quá 12.3 = 36 trận)

Ta biết rằng 1 số tự nhiên bất kỳ khi chia cho 20 thì có 19 số dư khác 0 là: 1, 2,...,19.

Giờ quay lại bài toán ta thấy 

Nếu trong 20 tổng này có 1 tổng chia hết 20 thì bài toán đã được chứng minh (vì các tổng đó lớn hơn 0 nhỏ hơn 36 nên tổng chỉ có thể là 20). 

Còn nếu trong 20 tổng này không có tổng nào chia hết cho 20 thì sẽ tồn tại ít nhất 2 tổng có cùng số dư khi chia cho 20.

Giả sử hai tổng đó là S m, S n (m > n) thì ta có S m - S n = (a1 + a2 + ... + a m) - (a1 + a2 + ... + a n) = a n+1 + a n+2 + ...+ a​ m chia hết cho 20. Hay S m - S​ n = 20.

Vậy tồn tại một số ngày liên tiếp trong đó anh chơi đúng 20 trận.

25 tháng 1 2017

20 đấy Vương ạ

19 tháng 6 2021

??????

Là sao ?

Bài này trong toán vui mỗi tuần mà

19 tháng 6 2021

tham khảo:

https://olm.vn/hoi-dap/detail/1070944541422.html

 

19 tháng 6 2021

Xét các số 2, 22, 222,....., 222.....222 (có p + 1 chữ số 2)

=> có p + 1 số, các số dư có thể khi  chia cho p là 0 , 1, ..., p - 1 (p số dư)

=> theo ngly dirichlet thì có chắc chắn ít nhất 2 số có cùng số dư

lấy 2 số đó trừ đi nhau thì được một số chỉ gồm chữ số 2 và 0 chia hết cho p

12 tháng 11 2017

Tớ tưởng lớp 6 là làm được bài này chứ?

12 tháng 11 2017

Gọi số bài tập hoàn thành cả tuần là x 

Ta có \(x\le12\)

Một tuần có 7 ngày. Nên mỗi số bài tập mỗi ngày Hoa phải làm là \(\frac{x}{7}\)

Gọi số ngày liên tiếp là y

Ta có phương trình:  \(x+\frac{x}{7}\cdot y=20\)

Ta có \(x+\frac{xy}{7}=20\)

Từ đó tính đc \(x=10\)và \(y=7\)Suy ra được một số ngày liên tiếp sao thì số bài tập đúng bằng 20

16 tháng 10 2018

5 tháng 6 2018

1 tháng 10 2018

4 tháng 12 2017

Đáp án là A