K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 3

a) Giá trị lớn nhất của đồ thị hàm số trên đoạn \(\left[ {0;3} \right]\) là \(M = 3\).

Với \({x_0} = 3\) thì \(f\left( 3 \right) = 3\).

b) Giá trị nhỏ nhất của đồ thị hàm số trên đoạn \(\left[ {0;3} \right]\) là \(m =  - 1\).

Với \({x_0} = 1\) thì \(f\left( 1 \right) =  - 1\).

2 tháng 10 2021

Gửi bạnundefinedundefined

NV
26 tháng 3 2021

\(f'\left(x\right)=4x\Rightarrow y=2x^2+1-4x\)

\(y'\left(x\right)=4x-4=0\Rightarrow x=1\)

NV
11 tháng 3 2022

\(2x.f'\left(x\right)-f\left(x\right)=x^2\sqrt{x}.cosx\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}}.f'\left(x\right)-\dfrac{1}{2x\sqrt{x}}f\left(x\right)=x.cosx\)

\(\Leftrightarrow\left[\dfrac{f\left(x\right)}{\sqrt{x}}\right]'=x.cosx\)

Lấy nguyên hàm 2 vế:

\(\int\left[\dfrac{f\left(x\right)}{\sqrt{x}}\right]'dx=\int x.cosxdx\)

\(\Rightarrow\dfrac{f\left(x\right)}{\sqrt{x}}=x.sinx+cosx+C\)

\(\Rightarrow f\left(x\right)=x\sqrt{x}.sinx+\sqrt{x}.cosx+C.\sqrt{x}\)

Thay \(x=4\pi\)

\(\Rightarrow0=4\pi.\sqrt{4\pi}.sin\left(4\pi\right)+\sqrt{4\pi}.cos\left(4\pi\right)+C.\sqrt{4\pi}\)

\(\Rightarrow C=-1\)

\(\Rightarrow f\left(x\right)=x\sqrt{x}.sinx+\sqrt{x}.cosx-\sqrt{x}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Ta có: \(f\left( 0 \right) = a\)

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 =  - 2\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\).  Khi đó:

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a =  - 2\).

Vậy với \(a =  - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

NV
29 tháng 6 2021

\(f'\left(x\right)=0\) có 3 nghiệm \(x=-1;0;2\)

Dấu của \(f'\left(x\right)\) trên trục số:

undefined

Ta thấy có 2 lần \(f'\left(x\right)\) đổi dấu từ âm sang dương nên hàm có 2 cực tiểu

Chọn C

15 tháng 4 2022

undefined

15 tháng 4 2022

mình cảm ơn ạ♥♥♥

15 tháng 3 2021

Với \(m=0\Rightarrow f\left(x\right)=-2x-1\le0\Leftrightarrow x\ge-\dfrac{1}{2}\)

\(\Rightarrow m=0\) không thỏa mãn yêu cầu bài toán.

Với \(m\ne0\)\(f\left(x\right)\le0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=1+m\le0\end{matrix}\right.\Leftrightarrow m\le-1\)

\(\Rightarrow m\in\left\{m\in Z|-10< m\le-1\right\}\)

Vậy có 9 số nguyên thỏa mãn yêu cầu bài toán.