tìm x,y
C = -1 + (y - 2)^2 + / 1/2x + 5/ đạt GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bước 1: Tìm điểm chung của hai đồ thị y=(3m+2)⋅2+5(m≠−1) và y=−x−1:
Để điểm A(X,Y) là điểm chung của hai đồ thị, ta giải hệ phương trình:
(3m+2)⋅2+5=−X−1
=> m = -(x+10)/6
Bước 2: Tính giá trị p tại điểm A:
Ta đã biết Y=−X−1, thay vào hàm số p:
p=Y^2+2X−3
p=(−X−1)^2+2X−3
p=X^2+2X+1+2X−3
p=X^2+4X−2
Bước 3: Tìm giá trị nhỏ nhất của p:
Hàm số p=X^2+4X−2 là một hàm bậc hai, với hệ số a của X^2 là 1>0, vì vậy đồ thị của hàm số p là một đường parabol mở hướng lên. Để tìm giá trị nhỏ nhất của p, ta xác định điểm cực tiểu của đường parabol, đó là điểm mà đường cong cực tiểu nhất.
Đối với một hàm bậc hai y=ax^2+bx+c, điểm cực tiểu được xác định bởi:
Xmin=-b/2a
Ymin=f(Xmin)
Xmin=−2
Ymin=(−2)2+4⋅(−2)−2=0
Vậy giá trị nhỏ nhất của p là pmin=0.
Bước 4: Tìm giá trị m tương ứng với pmin=0:
Ta đã biết m=−(X+10)/6, thay pmin=0 vào đó:
0=−(Xmin+10)/6
=> 0=-4/3
Điều này không thỏa mãn phương trình, vậy không có giá trị m nào khiến pmin=0.
a) \(2\left(x+5\right)-3x=2x+1\)
\(\left(x+2\right)+\left(x-2x+1\right)\ge0\)
\(=\left(x+2\right)+\left(x-2+1\right)-3\ge-1\)
b)
Bài này ta sử dụng kĩ thuật tham số hóa.
Giả sử A đạt GTNN tại a= x, b= y, c= z khi đó x + y +z = 3. (1)
Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:
a2+x2≥2axa2+x2≥2ax. 4a2≥8ax−4x24a2≥8ax−4x2.
b2+y2≥2byb2+y2≥2by. => 6b2≥12by−6y26b2≥12by−6y2.
c2+z2≥2zc2+z2≥2z. 3c2≥6cz−3z23c2≥6cz−3z2.
=> A≥(8ax+12by+6cz)−(4x+6y+3z)A≥(8ax+12by+6cz)−(4x+6y+3z).
Để sử dụng được GT thì 8x = 12y = 6z. (2)
Từ (1); (2) ta tìm ra được x, y, z=>...
c,d chịu
\(x=-1\)
kí hiệu a l b là a chia hết cho b nhé
xy-1 l (x-1)(y-1) <=> xy-1 l y-1 <=> y(x-1)+y-1 l y-1 => x-1 l y-1
tương tự : y-1 l x-1
=> \(\orbr{\begin{cases}x-1=y-1\\x-1=1-y\end{cases}}\Rightarrow\orbr{\begin{cases}x=y\\x+y=2\end{cases}}\)
+> x=y \(\Rightarrow x^2-1\)l \(\left(x-1\right)^2\) <=> x+1 l x-1 <=> 2 l x-1 => x=2 hoặc x=3
|+> x+y=2 thay vào tương tự như trên nhé
a) 2.(x+1) = 3.(4x-1)
=> 2x + 2 = 12x - 3
=> 2x - 12x = -3 - 2
=> -10x = - 5
=> x = 1/2
Thay x = 1/2 vào P
\(P=\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}.\)
...
b) \(A=\frac{4-x}{x-2}=\frac{6-\left(x-2\right)}{x-2}=\frac{6}{x-2}-1\)
Để A nhỏ nhất
=> 6/(x-2) có giá trị nhỏ nhất
nếu x là số nguyên
=> 6/(x-2) có giá trị nhỏ nhất là: 6/(x-2) = - 6 tại x = 1
Min A = -7 tại x = 1
nếu x không phải là số nguyên
...
mk ko tìm đc GTNN của A
\(a+b=2x-5\)
=>\(\left(a+b\right)^2=\left(2x-5\right)^2\)
=>\(a^2+b^2+2ab=4x^2-20x+25\)
=>\(2x^2+4x-1+2ab=4x^2-20x+25\)
=>\(2ab=2x^2-24x+26\)
=>\(ab=x^2-12x+13=x^2-12x+36-23=\left(x-6\right)^2-23\ge-23\).
\(ab\) đạt giá trị nhỏ nhất là -23 ⇔\(x-6=0\)⇔\(x=6\)
Ta có \(\left(2x+y+1\right)^2\ge0;\left(4x+my+5\right)^2\ge0\Rightarrow G\ge0\)
Xét hệ \(\hept{\begin{cases}2x+y+1=0\\4x+my+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y+2=0\\4x+my+5=0\end{cases}\Rightarrow}\left(m-2\right)y+3=0}\)
Nếu \(m\ne2\)thì \(m-2\ne0\Rightarrow\hept{\begin{cases}y=\frac{3}{2-m}\\x=\frac{m-5}{4-2m}\end{cases}}\)
\(\Rightarrow Min_G=0\)
Nếu m=2 thì
\(G=\left(2x+y+1\right)^2+\left(4x+my+5\right)^2=\left(2x+y+1\right)^2+\left[2\cdot\left(2x+y+1\right)+3\right]^2\)
Đặt 2x+y+1=z thì
\(G=5z^2+12z+9=5\left[\left(z+\frac{6}{5}\right)^2+\frac{9}{25}\right]=5\left(x+\frac{6}{5}\right)+\frac{9}{5}\ge\frac{9}{5}\)
\(Min_G=\frac{9}{5}\Leftrightarrow2x+y+1=\frac{-6}{5}\)hay \(y=\frac{-11}{5}-2x,x\inℝ\)