Tìm a để
X^4+2x^2+5x+a chia hết cho x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm m để
a, (x^4+5x^3-x^2-17x+m+4)chia hết cho (x^2+2x-3)
b, (2x^4+mx^3-mx-2) chia hết cho (x^2-1)
a: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
a) 2x + 3 chia hết cho x + 1
2x + 2 + 1 chia hết cho x + 1
1 chia hết cho x + 1
x + 1 thuộc U(1) = {1}
x + 1 =1< = > x = 0
Tương tự
a. 2x+3 chia hết cho x+1
=> 2x+2+1 chia hết cho x+1
=> 2.(x+1)+1 chia hết cho x+1
=> 1 chia hết cho x+1
=> x+1 \(\in\)Ư(1)={-1; 1}
=> x \(\in\){-2; 0}
b. => 4x+69 chia hết cho x+5
=> 4x+20+49 chia hết cho x+5
=> 4.(x+5)+49 chia hết cho x+5
=> 49 chia hết cho x+5
=> x+5 \(\in\)Ư(49)={-49; -7; -1; 1; 7; 49}
=> x \(\in\){-54; -12; -6; -4; 2; 44}
c. => 2x-4+11 chia hết cho x-2
=> 2.(x-2)+11 chia hết cho x-2
=> 11 chia hết cho x-2
=> x-2 E Ư(11)={-11; -1; 1; 11}
=> x E {-9; 1; 3; 13}
d. => 5x+10+18 chia hết cho x+2
=> 5.(x+2)+18 chia hết cho x+2
=> 18 chia hết cho x+2
=> x+2 E Ư(18)={-18; -9; -6; -3; -2; -1; 1; 2; 3; 6; 9; 18}
=> x E {-20; -11; -8; -5; -4; -3; -1; 0; 1; 4; 7; 16}
e. => 4x+2+17 chia hết cho 2x+1
=> 2.(2x+1) +17 chia hết cho 2x+1
=> 17 chia hết cho 2x+1
=> 2x+1 E Ư(17)={-17; -1; 1; 17}
=> x E {-9; -1; 0; 8}.
Để x4 - 5x2 + 4x + a ⋮ 2x + 1 thì :
x4 - 5x2 + 4x + a = ( 2x + 1 ) . Q
Vì đẳng thức trên đúng với mọi x nên đặt x = \(\frac{-1}{2}\)ta có :
\(\left(\frac{-1}{2}\right)^4-5\cdot\left(\frac{-1}{2}\right)^2+4\cdot\left(\frac{-1}{2}\right)+a=\left[2\cdot\left(\frac{-1}{2}\right)+1\right]\cdot Q\)
\(\Leftrightarrow\frac{1}{16}-\frac{5}{4}-2+a=0\cdot Q\)
\(\Leftrightarrow\frac{-51}{16}+a=0\)
\(\Leftrightarrow a=\frac{51}{16}\)
Vậy......
Ai giúp vs