K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P(x)-Q(x)

\(=x^2-3x^2-2x^2-1-\left(x^2-x^2+x+1\right)\)

\(=-4x^2-1-\left(x+1\right)\)

\(=-4x^2-1-x-1\)

\(=-4x^2-x-2\)

a: \(P\left(x\right)=3x^2-x-1\)

\(Q\left(x\right)=-3x^2-4x-2\)

b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)

c: Để G(x)-6x-1=0 thì 6x2-3x=0

=>3x(2x-1)=0

=>x=0 hoặc x=1/2

22 tháng 5 2022

`a)M(x)=P(x)-Q(x)`

`=>M(x)=-3x^2+2x+1+3x^2-x+2`

`=>M(x)=x+3`

`b)` Cho `M(x)=0`

`=>x+3=0`

`=>x=-3`

Vậy nghiệm của `M(x)` là `x=-3`

`c)P(x)=Q(x)`

`=>-3x^2+2x+1=-3x^2+x-2`

`=>-3x^2+3x^2+2x-x=-2-1`

`=>x=-3`

Vậy `x=-3` thì `P(x)=Q(x)`

`P(x)=`\( 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x\)

`= (2x^4-x^4)+3x^3+(3x^2-2x^2)+(-4x+6x)+2`

`= x^4+3x^3+x^2+2x+2`

 

`Q(x)=`\(x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3\)

`= x^4+x^3+(3x^2-x^2)+(5x-3x)+(-1+2)`

`= x^4+x^3+2x^2+2x+1`

 

`P(x)+Q(x)=(x^4+3x^3+x^2+2x+2)+(x^4+x^3+2x^2+2x+1)`

`=x^4+3x^3+x^2+2x+2+x^4+x^3+2x^2+2x+1`

`=(x^4+x^4)+(3x^3+x^3)+(x^2+2x^2)+(2x+2x)+(2+1)`

`= 2x^4+4x^3+3x^2+4x+3`

`@`\(\text{dn inactive.}\)

P(x)=x^4+3x^3+x^2+2x+2

Q(x)=x^4+x^3+2x^2+2x+1

P(x)+Q(x)=2x^4+4x^3+3x^2+4x+3

a: P(x)=-5x^3+6x^2+3x-1

Q(x)=-5x^3+6x^2+4x+2

b: H(x)=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2

=-10x^3+12x^2+7x+1

T(x)=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2

=-x-3

c: T(x)=0

=>-x-3=0

=>x=-3

d: G(x)=-(-10x^3+12x^2+7x+1)

=10x^3-12x^2-7x-1

24 tháng 6 2020

a, \(P\left(x\right)=5x^3-3x+7-x\)

               \(=5x^3-4x+7\)

\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\)

             \(=-5x^3-x^2+4x-5\)

Ta có \(P\left(x\right)+Q\left(x\right)=-x^2+2\)

         \(P\left(x\right)-Q\left(x\right)=10x^3+x^2-8x+12\)

b, \(P\left(x\right)+Q\left(x\right)=0\)

\(\Leftrightarrow-x^2+2=0\)

\(\Leftrightarrow-x^2=-2\)

\(\Leftrightarrow x^2=2=\left(\pm\sqrt{2}\right)^2\)

\(\Rightarrow x=\pm\sqrt{2}\)

Vậy \(x=\pm\sqrt{2}\)

24 tháng 6 2020

P(x) = 5x3 - 3x + 7 - x

        = 5x3 - 4x + 7

Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2

        = -5x3 - x2 + 4x - 5

P(x) + Q(x) = ( 5x3 - 4x + 7 ) + ( -5x3 - x2 + 4x - 5 )

                   = 5x3 - 4x + 7 - 5x3 - x2 + 4x - 5

                   = -x2 + 2

P(x) - Q(x) = ( 5x3 - 4x + 7 ) - ( -5x3 - x2 + 4x - 5 )

                  = 5x3 - 4x + 7 + 5x3 + x2 - 4x + 5

                  = 10x3 + x2 - 8x + 12

Đặt H(x) = P(x) + Q(x)

=> H(x) = -x2 + 2

H(x) = 0 <=> -x2 + 2 = 0

              <=> -x2 = -2

              <=> x2 = 2

              <=> x = \(\pm\sqrt{2}\)

Vậy nghiệm của đa thức là \(\pm\sqrt{2}\)

a)

P(x) + O(x) = \(\left(x^3+2x^2-3x+2020\right)+\left(2x^3-3x^2+4x+2021\right)\)

P(x) + O(x) = \(3x^3-x^2+x+4041\)

b)

P(x) - O(x) = \(x^3+2x^2-3x+2020-2x^3+3x^2-4x-2021\)

P(x) - O(x) = \(-x^3+5x^2-7x-1\)

27 tháng 4 2022

a) \(P\left(x\right)=x^2+4x+9-2x^3\)\(=-2x^3+x^2+4x+9\)

\(Q\left(x\right)=2x^3-3x+2x^2-9=2x^3+2x^2-3x-9\)

b) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(-2x^3+x^2+4x+9\right)+\left(2x^3+2x^2-3x-9\right)\)

\(=\left(-2x^3+2x^3\right)+\left(x^2+2x^2\right)+\left(4x-3x\right)+\left(9-9\right)\)

\(=3x^2+x\)

c) Ta có: \(M\left(x\right)=3x^2+x\)

\(\Rightarrow M\left(-\dfrac{1}{3}\right)=3.\left(-\dfrac{1}{3}\right)^2+\left(-\dfrac{1}{3}\right)=\dfrac{1}{3}+\left(-\dfrac{1}{3}\right)=0\)

Vậy \(x=-\dfrac{1}{3}\) là nghiệm của đa thức \(M\left(x\right)\)

9 tháng 3 2023

Trên là 3 xuống thành 2 rồi :v 

Chỗ :  \(-x^2\) 

9 tháng 3 2023

` P(x) = x^3-2x^2+x-2`

`Q(x) = 2x^3 - 4x^2+ 3x – 5​​​​6`

a) `P(x) -Q(x)`

`= x^3-2x^2+x-2 - 2x^3 +4x^2 -3x +56`

`=(x^3-2x^3) +(4x^2-2x^2) +(x-3x) +(-2+56)`

`= -x^2 +2x^2 -2x +54`

b) Thay `x=2` vào `P(x)` ta đc

`P(2) = 2^3 -2*2^2 +2-2`

`= 8-8+2-2 =0`

Vậy chứng tỏ `x=2` là nghiệm của đa thức `P(x)`

Thay `x=2` vào `Q(x)` ta đc

`Q(2) = 2*2^3 -4*2^2 +3*2-56`

`=16 -16+6-56`

`= -50`

Vậy chứng tỏ `x=2` là ko nghiệm của đa thức `Q(x)`

19 tháng 12 2021

\(P\left(x\right)-Q\left(x\right)\)

\(=x^3+3x^3-x-4-x^4-3x^3+3x^5+2x-6\)

\(=3x^5+x-10\)

19 tháng 12 2021

\(P\left(x\right)-Q\left(x\right)=3x^2-5+x^4-x+1-6+2x-3x^3-x^4+3x^5\\ =3x^5-3x^3+3x^2+x-10\\ Q\left(x\right)-P\left(x\right)=6-2x+3x^3+x^4-3x^5-3x^2+5-x^4+x-1=-3x^5+3x^3-3x^2-x+10\)

Đó là 2 biểu thức đối nhau

Các hệ số của 2 đa thức đối nhau