\(2x-3=x-\left(\frac{-1}{2}\right)\)
chuyên mục tìm x các bạn giải thích giùm mình luôn nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em thử nha,sai thì thôi ạ.
2/ ĐK: \(-2\le x\le2\)
PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)
Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk
PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)
\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)
Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..
1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
ĐK \(x\ge-1\)
Nhân liên hợp ta có
\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)
<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)
<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)
=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
\(\Leftrightarrow x^2+2x+3-3x^2-3x-3=\left(x^2+x+1\right)\left(x^4+x^2+1\right)\)
\(\Leftrightarrow-2x^2-x=\left(x^2+x+1\right)\left(x^4+x^2+1\right)\)
\(\Leftrightarrow-2\left(x^2+\frac{x}{2}\right)=\left(x^2+x+1\right)\left(x^4+x^2+1\right)\)
\(\Leftrightarrow-2\left(x^2+\frac{x}{2}+\frac{1}{16}\right)+\frac{1}{8}=\left(x^2+x+1\right)\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\frac{1}{8}-2\left(x+\frac{1}{4}\right)^2=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left[\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
Vế trái của pt luôn luôn nhỏ hơn 1/8, còn vế phải luôn luôn lớn hơn 9/16=> pt vô nghiệm
Mình làm cho bạn 2 câu khó hơn còn mấy câu còn lại dungf phương pháp quy đồng rồi chuyển vế là tính được mà
c, <=> [(x-1)/2009 ]-1 +[ (x-2)/2008] -1 = [(x-3)/2007]-1 +[(x-4)/2006]-1
<=> (x-2010)/2009 + (x-2010)/2008 = (x-2010)/2007 + (x-2010)/2006
<=> (x-2010)*(1/2009+1/2008-1/2007-1/2006)=0
=> x-2010=0 => x=2010
d, TH1 : cả hai cùng âm
=>> 2X-4 <O => X< 2
Và 9-3x<0 =>> x> 3
=>> loại
Th2 cả hai cùng dương
2x-4>O => x>2
Và 9-3x>O => x<3
=>> 2<x<3 (tm)
\(2x-3=x-\left(\frac{-1}{2}\right)\)
\(\Rightarrow2x-3=x+\frac{1}{2}\)
\(\Rightarrow2x=x+\frac{1}{2}+3\)
\(\Rightarrow2x-x=\frac{1}{2}+3\)
\(\Rightarrow x=\frac{7}{2}\)
2x-x+\(\frac{1}{2}\)=3
2x-x=3-\(\frac{1}{2}\)
2x-x=\(\frac{5}{2}\)
x-x=\(\frac{5}{2}\): 2
x-x=\(\frac{5}{4}\)