cho 2 số nguyên a và b, trong đó a < b và b > 0. Chứng minh \(\frac{a}{b}\)< \(\frac{a+1}{b+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta xét tích: a.(b+1) = ab+a
b.(a+1) = ab+b
- Do a<b \(\Rightarrow\)ab+a<ab+b\(\Rightarrow\)a.(b+1)<b.(a+1)
Suy ra: \(\frac{a}{b}\)<\(\frac{a+1}{b+1}\)
\(\frac{a}{b}< \frac{a}{b+1}\)(2 phân số cùng tử số, mẫu số nào bé hơn thì phân số đó lớn hơn)
\(\frac{a}{b+1}< \frac{a+1}{b+1}\)(2 phân số cùng mẫu số, tử số nào lớn hơn thì phân số đó lớn hơn)
Từ đó suy ra \(\frac{a}{b}< \frac{a+1}{b+1}\)
Với a,b \(\in\)Z, b >0.
Ta có : a < b
\(\Rightarrow\)a + ab < b + ab
\(\Rightarrow\)a(b+1) < b(a+1)
\(\Rightarrow\)\(\frac{a}{b}< \frac{a+1}{b+1}\)
trả lời :
a/b < a+1/b+1
vì:
a cũ sẽ nhỏ hơn a mới 1 đơn vị
b cũ cũng sẽ nhỏ hơn b mới 1 đơn vị
mà a<b
nên có thể a + 1 sẽ = b cũ
ví dụ:
a=5
b=6
thì ta có:
5/6 và 5+1/6+1
=>5/6 và 6/7
nếu quy đồng 2 mẫu số thì ta có:
35/42 và 36/42
mà35/42 < 36/42
=> a/b < a+1/b+1