K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

1.

Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$

Đặt \(a=\overline{A5}\)

\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)

\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$

--------------------

2.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.

Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)

Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))

Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

3.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.

Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)

Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$

$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))

Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.

-----------------

4.

Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$

Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)

\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)

Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)

8 tháng 9 2017

Có phải thế này ko bn
Tìm Max A ( a#0, b#0, a,b là c/s)
sao cho A và A đều là số cp
Coi vẻ khó nhỉ

8 tháng 9 2017

Gọi số phải tim là Aab
ta có A = k^2 suy ra 100 A =(10k)^2 (1)
Aab=q^2 (2)
Lấy (2) - (1) ta có: 
ab = q^2 - (10k)^2 = (q - 10k)(q + 10k)
Nhận xét: Nếu đặt (q - 10k) = m
thì (q + 10k) = m +20k
Do đó ab = m(m+20k)
Dùng chặn sẽ ra

T.I.C.K cho mình nha please :)

2 tháng 8 2020

Gọi số chính phương cần tìm là n2n2

Có:

:n2=100A+bn2=100A+b ( A là số trăm,1≤b≤991≤b≤99)

Theo bài ra ta có 100A là số chính phương

⇒A⇒A là số chính phương

Đặt A=x2A=x2

Có: n2>100x2n2>100x2

⇒n>10x⇒n>10x

⇒n≥10x+1⇒n≥10x+1

⇒n2≥(10x+1)2⇒n2≥(10x+1)2

⇒100x2+b≥100x2+20x+1⇒100x2+b≥100x2+20x+1

⇒b≥20x+1⇒b≥20x+1

 b≤99b≤99

⇒20x+1≤99⇒20x+1≤99

⇒x≤4⇒x≤4

Ta có :

n2=100x2+b≤1600+99n2=100x2+b≤1600+99

⇒n2=100x2+b≤1699⇒n2=100x2+b≤1699

Chỉ  412=1681(tm)412=1681(tm)

Vậy số chính phương lớn nhất phải tìm là 412=1681

13 tháng 3 2016

Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 ( k số twj nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa màn, vậy X= 147*24 = 3969 = 63^2.

13 tháng 3 2016

nhớ k cho tao