Câu 19: Cho tam giác ABC cân tại A, đường cao AH (H thuộc BC) a) Chứng minh tam giác AHB bằng tam giác AHC b) Từ H kẻ đường thẳng song song với AC cắt AB tại D, chứng minh tam giác ADH cân từ đó suy ra AD=DH c) Gọi E là trung điểm của AC, CD cắt AH tại G Chứng minh B,E, G thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của CB
HD//AB
=>D là trung điểm của AC
ΔAHC vuông tại H có HD là trung tuyến
nên DH=DC
=>ΔDHC cân tại D
=>DM vuông góc HC
=>DM//AH
Tham khảo
a) Xét 2 tam giác vuông ΔAHB và ΔAHC có:
AH chung
AB = AC (GT)
⇒ Δ AHB = ΔAHC (cạnh huyền - cạnh góc vuông)
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ˆBAH=ˆCAHBAH^=CAH^ ( 2 góc tương ứng) (1)
Ta lại có: HD // AC ( GT )
⇒ ˆDHA=ˆCAHDHA^=CAH^ (2 góc so le trong) (2)
Từ (1) và (2) => ˆDHA=ˆBAHDHA^=BAH^
Hay: ˆDHA=ˆDAHDHA^=DAH^
=> ΔADH cân tại D
=> AD = DH
c) Ta có: ΔABH = ΔACH (câu a)
⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến ΔABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB = ∠ACB ( 2 góc đồng vị )
Mà ΔABC cân tại A (GT)
⇒ ∠ABC= ∠ACB
⇒ ∠DHB = ∠DBH
=> ΔDHB cân tại D
⇒ DB =DH
Lại có AD = DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến ΔABC (4)
Từ (3), (4) ta có: AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
Mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng
tham khảo ở đây : Câu hỏi của Trần Ngọc Mai Anh - Toán lớp 7 - Học toán với OnlineMath
1: Xét ΔBDH có \(\widehat{DBH}=\widehat{DHB}\left(=\widehat{ACB}\right)\)
nên ΔBDH cân tại D
Xét ΔABC có
H là trung điểm của BC
HD//AC
Do đó: D là trung điểm của AB
2: Xét ΔABC có
CD là đường trung tuyến
AH là đường trung tuyến
CD cắt AH tại G
Do đó: G là trọng tâm của ΔABC
=>BG là đường trung tuyến ứng với cạnh AC
mà E là trung điểm của AC
nên B,G,E thẳng hàng
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Ta có: DH//AC
=>\(\widehat{DHA}=\widehat{HAC}\)
mà \(\widehat{HAC}=\widehat{DAH}\)(ΔAHC=ΔAHB)
nên \(\widehat{DAH}=\widehat{DHA}\)
=>DA=DH
=>ΔDAH cân tại D
c:
Ta có;ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của AB
Ta có: \(\widehat{DHA}+\widehat{DHB}=\widehat{AHB}=90^0\)
\(\widehat{DAH}+\widehat{DBH}=90^0\)(ΔAHB vuông tại H)
mà \(\widehat{DHA}=\widehat{DAH}\)
nên \(\widehat{DHB}=\widehat{DBH}\)
=>DH=DB
mà DH=DA
nên DA=DB
=>D là trung điểm của AB
Xét ΔABC có
CD,AH là các đường trung tuyến
CD cắt AH tại G
Do đó: G là trọng tâm của ΔABC
Xét ΔABC có
BE là đường trung tuyến
G là trọng tâm
Do đó: B,E,G thẳng hàng