K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

để mình làm cho 

\(P=\sin^6_a+\cos^6_a+3\sin_a^2+\cos^2_a=\left(\sin^2_a+\cos^2_a\right)\left(\sin^4_a-\sin^2_a\cos^2_a+\cos^4_a\right)\) \(+3.\sin^2_a.\cos^2_a\)

         \(=\sin^4_a+2\sin^2_a.\cos^2_a+\cos^4_a=\left(\sin^2_a+\cos^2_a\right)^2=1\)

đề đoạn cuối phải là nhân chứ không phải +

15 tháng 9 2017

ko phụ thuộc nhé 

30 tháng 7 2021

\(\left(\sqrt{\dfrac{1+sin\alpha}{1-sin\alpha}}+\sqrt{\dfrac{1-sin\alpha}{1+sin\alpha}}\right).\dfrac{1}{\sqrt{1+tan^2\alpha}}\)

\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{\left(1-sin\alpha\right)\left(1+sin\alpha\right)}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{\left(1+sin\alpha\right)\left(1-sin\alpha\right)}}\right).\dfrac{1}{\sqrt{1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2}}\)

\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{1-sin^2\alpha}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{1-sin^2\alpha}}\right).\dfrac{1}{\sqrt{\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}}}\)

\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{cos^2\alpha}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{cos^2\alpha}}\right).\dfrac{1}{\sqrt{\dfrac{1}{cos^2\alpha}}}\)

\(=\left(\dfrac{1+sin\alpha}{cos\alpha}+\dfrac{1-sin\alpha}{cos\alpha}\right).\dfrac{1}{\dfrac{1}{cos\alpha}}=\dfrac{2}{cos\alpha}.cos\alpha=2\)

27 tháng 8 2021

a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)

\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)

\(=\left(1-sin^2a\right)-sin^2a=1\)

27 tháng 8 2021

b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)

\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2-sin^2a-cos^2a=2-1=1\)

10 tháng 7 2016

Ta có: \(\sin^2\alpha+\cos^2\alpha=1\forall\alpha\)

\(\Rightarrow\left(\sin^2\alpha+\cos^2\alpha\right)^3=1\Rightarrow\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha\cdot\cos^2\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)=1.\)

\(\Rightarrow E=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha\cdot\cos^2\alpha=1.\)không phụ thuộc vào \(\alpha\)

2 tháng 10 2015

\(A=\sin^2\alpha+\cos^2\alpha+2.\sin\alpha.\cos\alpha-2\sin\alpha.\cos\alpha-1\)

\(=1-1=0\) nên với mọi góc \(\alpha\) thì A không phụ thuộc vào \(\alpha\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

a, Do \(-1\le sin\alpha\le1\Rightarrow-0,3\le v_x=0,3sin\alpha\le0,3\)

Vậy giá trị lớn nhất của \(v_x\) là 0,3m/s và giá trị nhỏ nhất là -0,3m/s

b, Ta có đồ thị hàm số: 

Với góc \(\alpha\in\left(0;\dfrac{\pi}{2}\right)\) hoặc \(\alpha\in\left(\dfrac{3\pi}{2};2\pi\right)\) thì \(v_x\) tăng.

13 tháng 4 2020

1) \(\left(\tan\alpha+\cot\alpha\right)^2-\left(\tan\alpha-\cot\alpha\right)^2\)

\(\tan^2\alpha+\cot^2\alpha+2\tan\alpha.\cot\alpha-\tan^2\alpha+2\tan\alpha.\cot\alpha-\cot^2\alpha\)

\(4\tan\alpha.\cot\alpha\)

\(4.\frac{\cos\alpha}{\sin\alpha}.\frac{\sin\alpha}{\cos\alpha}=4\)

2) \(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}\)

\(\frac{4-2-\sqrt{2+\sqrt{2}}}{\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)\left(2-\sqrt{2+\sqrt{2}}\right)}\)

\(\frac{1}{\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)}\)

Mặt khác: \(\sqrt{2}< 2\Rightarrow2+\sqrt{2}< 4\Rightarrow2+\sqrt{2+\sqrt{2}}< 2+\sqrt{4}=4\)

=> \(2+\sqrt{2+\sqrt{2+\sqrt{2}}}< 2+\sqrt{4}=4\)

=> \(\frac{1}{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}>\frac{1}{4}\)

=> \(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}>\frac{1}{4}\)

Tính \(tana+cota\) à bạn?

26 tháng 7 2017

Kết quả:

A=1    B=2   C=-4

3 tháng 10 2018

\(A=\sin^6\alpha+cos^6\alpha+3\sin^2\alpha\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right).\)vì\(\sin^2\alpha+\cos^2\alpha=1\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)

\(B=2\left(\cos^2\alpha+\sin^2\alpha\right)=2.1=2\)

\(C=\frac{-4\cos\alpha\sin\alpha}{\sin\alpha\cos\alpha}=-4\)