K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 3 2024

Ta có \(\widehat{B}+\widehat{C}=180^0-\widehat{A}=120^0\)

\(\Rightarrow\widehat{MBC}+\widehat{MCB}=\dfrac{1}{2}\widehat{B}+\dfrac{1}{2}\widehat{C}=60^0\)

\(\Rightarrow\widehat{BMC}=180^0-\left(\widehat{MBC}+\widehat{MCB}\right)=120^0\)

\(\Rightarrow\widehat{B'MC'}=\widehat{BMC}=120^0\) (đối đỉnh)

\(\Rightarrow\widehat{A}+\widehat{B'MC'}=60^0+120^0=180^0\)

\(\Rightarrow AB'MC'\) nội tiếp

NV
19 tháng 3 2024

loading...

21 tháng 3 2016

e làm chứng minh dc góc NPI = BAC=60 độ, thế e ghi tương tự vs góc PNI=BAC=60 độ dc k ạ

1 tháng 4 2016

H�nh tam gi�c TenDaGiac1: Polygon B, A, C H�nh tam gi�c TenDaGiac1_1: Polygon B', A', C' G�c ?: G�c gi?a G, B, B' G�c ?: G�c gi?a G, B, B' G�c ?: G�c gi?a B, A, C G�c ?: G�c gi?a B, A, C ?o?n th?ng c: ?o?n th?ng [B, A] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng a: ?o?n th?ng [A, C] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng b: ?o?n th?ng [C, B] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng c_1: ?o?n th?ng [B', A'] c?a H�nh tam gi�c TenDaGiac1_1 ?o?n th?ng a_1: ?o?n th?ng [A', C'] c?a H�nh tam gi�c TenDaGiac1_1 ?o?n th?ng b_1: ?o?n th?ng [C', B'] c?a H�nh tam gi�c TenDaGiac1_1 ?o?n th?ng d: ?o?n th?ng [B', B] ?o?n th?ng e: ?o?n th?ng [C', C] ?o?n th?ng f: ?o?n th?ng [A', A] ?o?n th?ng g: ?o?n th?ng [B', G] ?o?n th?ng h: ?o?n th?ng [B, G] ?o?n th?ng i: ?o?n th?ng [G, M] B = (-2.08, 1.4) B = (-2.08, 1.4) B = (-2.08, 1.4) A = (3.04, 1.4) A = (3.04, 1.4) A = (3.04, 1.4) C = (0.1, -0.66) C = (0.1, -0.66) C = (0.1, -0.66) B' = (0.38, 4.84) B' = (0.38, 4.84) B' = (0.38, 4.84) A' = (5.5, 4.84) A' = (5.5, 4.84) A' = (5.5, 4.84) C' = (2.56, 2.78) C' = (2.56, 2.78) C' = (2.56, 2.78) ?i?m G: (B + A + C) / 3 ?i?m G: (B + A + C) / 3 ?i?m G: (B + A + C) / 3 ?i?m M: Trung ?i?m c?a C, A ?i?m M: Trung ?i?m c?a C, A ?i?m M: Trung ?i?m c?a C, A

Góc giữa BB' và (ABC) là \(\widehat{B'BG}=60^0\). Suy ra đường cao \(B'G=BB'.\sin60^0=\dfrac{a\sqrt{3}}{2}\)

Lại có \(BG=BB'.\cos60^0=\dfrac{a}{2}\)

Gọi M là trung điểm AC thì \(BM=\dfrac{3}{2}BG=\dfrac{3a}{4}\)

Đặt AC=x thì \(BC=AC.\tan 60^0=x\sqrt{3}\)

Suy ra \(BM=\sqrt{BC^2+CM^2}=\sqrt{3x^2+\dfrac{x^2}{4}}=\dfrac{x\sqrt{13}}{2}=\dfrac{3a}{4}\). Suy ra \(x=\dfrac{3a\sqrt{13}}{26}\)

Do đó \(S_{ABC}=\dfrac{1}{2}BC.AC=\dfrac{x^2\sqrt{3}}{2}=\dfrac{9a^2\sqrt{3}}{52}\)

Vậy \(V_{A'ABC}=\dfrac{1}{3}BB'.S_{ABC}=\dfrac{3a^2\sqrt{3}}{52}\)

1 tháng 4 2016

Gọi G là trong tâm tam giác ABC ta có BG(ABC)Từ đó B′BCG^=600 là góc mà BB′ tạo với mặt phẳng (ABC). Trong tam giác vuông BBG ta có ngay: BG=a2,BG=a32BG=a2,B′G=a32



 Đặt AB=2xAB=2x, trong tam giác vuông ABCABC ta có:
  AC=x,BC=x3AC=x,BC=x3 (do ABCˆ=600ABC^=600)
Giả sử BGACBG∩AC thì BN=a2BG=3a4BN=a2BG=3a4.
Áp dụng định lí py ta go trong tam giác vuông BNCBNC ta có:
  BN2=NC2+BC29a216=x24+3x2x2=9a252(1)BN2=NC2+BC2⇒9a216=x24+3x2⇒x2=9a252(1)
ta có VAABC=13SABC.BG=13.12.AB.BC.a32=a312x.x3=ax24(2)VA′ABC=13SABC.B′G=13.12.AB.BC.a32=a312x.x3=ax24(2)
thay (2)(2) vào (1)(1) ta có: VA.ABC=9a3208VA′.ABC=9a3208    (đvtt)

26 tháng 2 2018

a, Có : HA'/AA' = HA'.BC/AA'.BC = S AHB + S AHC / S ABC

Tương tự : HB'/BB' = S BHA + S BHC / S ABC ; HC'/CC' = S CHA + S CHB / S ABC

=> HA'/AA' + HB'/BB' + HC'/CC' = 2.(S AHC + S AHB + S BHC)/S ABC = 2

Tk mk nha

7 tháng 4 2019

a)

'

AA

'

HA

BC

'.

AA

.

2

1

BC

'.

HA

.

2

1

S

S

ABC

HBC

; (0,5đi

m)

Tương t

:

'

CC

'

HC

S

S

ABC

HAB

;

'

BB

'

HB

S

S

ABC

HAC

(0,5đi

m)

1

S

S

S

S

S

S

'

CC

'

HC

'

BB

'

HB

'

AA

'

HA

ABC

HAC

ABC

HAB

ABC

HBC

(0,5đi

m)

b) Áp d

ng tính ch

t phân giác vào các tam giác ABC,

ABI, AIC:

AI

IC

MA

CM

;

BI

AI

NB

AN

;

AC

AB

IC

BI

(0,5đi

m )

AM

.

IC

.

BN

CM

.

AN

.

BI

1

BI

IC

.

AC

AB

AI

IC

.

BI

AI

.

AC

AB

MA

CM

.

NB

AN

.

IC

BI

(0,5đi

m )

12 tháng 3 2021

c) Bổ đề: Cho tam giác ABC có đường cao AH. Khi đó \(AH^2\le\dfrac{\left(AB+AC-CB\right)\left(AC+AB+BC\right)}{4}\).

Thật vậy, dựng hình chữ nhật AHCE. Lấy F đối xứng với C qua AF.

Ta có \(AH=CE=\dfrac{CF}{2}\).

Do đó \(CF^2+CB^2=BF^2\le\left(AB+AF\right)^2=\left(AB+AC\right)^2\Rightarrow CF^2\le\left(AB+AC-CB\right)\left(AC+AB+BC\right)\Rightarrow AH^2\le\dfrac{\left(AB+AC-CB\right)\left(AC+AB+BC\right)}{4}\).

Bổ đề được cm.

Áp dụng ta có \(\dfrac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\ge\dfrac{\left(AB+BC+CA\right)^2}{\dfrac{\left(AB+AC-CB\right)\left(AC+AB+BC\right)}{4}+\dfrac{\left(BC+BA-AC\right)\left(AC+AB+BC\right)}{4}+\dfrac{\left(BC+AC-AB\right)\left(AC+AB+BC\right)}{4}}=4\).

Vậy ta có đpcm.

12 tháng 3 2021

a) Ta có \(\dfrac{HA'}{AA'}=\dfrac{HA'.BC}{AA'.BC}=\dfrac{2S_{HBC}}{2S_{ABC}}=\dfrac{S_{HBC}}{S_{ABC}}\).

Tương tự \(\dfrac{HB'}{BB'}=\dfrac{S_{HCA}}{S_{ABC}};\dfrac{HC'}{CC'}=\dfrac{S_{HAB}}{S_{ABC}}\).

Do đó \(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=\dfrac{S_{HBC}+S_{HCA}+S_{HAB}}{S_{ABC}}=1\).

19 tháng 11 2022

Bài 2:

loading...

8 tháng 2 2018

Ai giúp với ạ !!!!

8 tháng 2 2017

Đáp án C