TÌm x để \(\frac{2\sqrt{x}}{x-\sqrt{x}+1}\) nhận giá trị nguyên
Giúp mk vs các bạn ơi, khó quá !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne-1\\x\ne1\end{cases}}\)
Ta có \(P=\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)-1\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x-2\sqrt{x}+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)\(=\frac{x+\sqrt{x}+1}{x+1}.\frac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}-1\)
\(=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}-1=\frac{x+\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}=\frac{x+2}{\sqrt{x}-1}\)
b. Ta có \(P-\sqrt{x}=\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\frac{x+2-x+\sqrt{x}}{\sqrt{x}-1}=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\frac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\frac{3}{\sqrt{x}-1}\)
Để \(P-\sqrt{x}\in Z\Rightarrow\sqrt{x}-1\inƯ\left(3\right)\Rightarrow\sqrt{x}-1\in\left\{-3;-1;1;3\right\}\)
\(\sqrt{x}-1\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(\sqrt{x}\) | -2 | 0 | 2 | 4 |
x | 0 | 4 | 16 | |
(l) | (n) | (n) | (n) |
Vậy \(x\in\left\{0;4;16\right\}\)thì \(P-\sqrt{x}\in Z\)
đkxđ là \(x\ne1;x>0\)
\(Q=\frac{\sqrt{x}\left(\left(\sqrt{x}\right)^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(Q=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
gtnn \(x-\sqrt{x}+1=x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
gtnn 3/4
ý c bạn tự làm nha mk chịu
a)ĐK: x khác 1; x>0
A=\(\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)+\(\frac{2\sqrt{x}}{x-1}\)-\(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)=\(\frac{\sqrt{x}-1+2x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{2}{\sqrt{x}}\)
b) Để A nhận giá trị nguyên thì \(\sqrt{x}\in\)Ước của 2=>\(\sqrt{x}=2;\sqrt{x}=-2\)(loại)=>x=4
a) Ta có:
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-4}{\sqrt{x}-2\sqrt{x}}\)
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{\sqrt{x}-4}{\sqrt{x}}\)
\(A=\frac{\left(\sqrt{x}-3\right)\sqrt{x}+\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(A=\frac{x-3\sqrt{x}+x-6\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(A=\frac{2x-9\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
Ta có
\(1D=\frac{\sqrt{x}-2}{\sqrt{x}-3}=1+\frac{1}{\sqrt{x}-3}\)
Để cho D nguyên thì \(\sqrt{x}-3\)phải là ước của 1
\(\Rightarrow\sqrt{x}-3=\left(-1;1\right)\)
=> x = (4; 16)
=> D = (0; 2)
1/ Để N nhận giá trị nguyên thì trước hết \(\sqrt{x}-2\)phải là ước của 3
\(\sqrt{x}-2=\left(-3;-1;1;3\right)\)
Thế vào ta tìm được x = (1; 9; 25)
=> N = (- 3; 3;1)